Лазерный проекционный микроскоп (варианты)



Лазерный проекционный микроскоп (варианты)
Лазерный проекционный микроскоп (варианты)
Лазерный проекционный микроскоп (варианты)

 


Владельцы патента RU 2463634:

Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Лазерный проекционный микроскоп содержит лазерный усилитель, с одной стороны от которого вдоль оптической оси расположены объектив и объект наблюдения, а с другой размещена система формирования изображения. Лазерный усилитель выполнен на основе активной среды лазера на парах бромида меди и связан с полупроводниковым источником накачки, система регистрации изображения выполнена на основе высокоскоростной CCD-камеры, установленной соосно с лазерным усилителем и связанной с персональным компьютером и схемой синхронизации, которая связана с полупроводниковым источником накачки. Технический результат - повышение точности контроля и анализа исследуемых процессов. 2 н.п. ф-лы, 3 ил.

 

Изобретения относятся к области квантовой электроники, а именно к лазерным проекционным системам, и могут быть использованы для неразрушающего контроля больших интегральных схем, визуализации быстропротекающих процессов, в том числе экранированных от наблюдателя фоновой засветкой, процессов обработки материалов концентрированными потоками энергии, исследования микрообъектов в медицине и биологии.

Известен лазерный проекционный микроскоп [Патент РФ №2144204, МПК7 G02B 21/00, опубл. 10.01.2000 г.], который содержит соосно установленные объектив и лазерный усилитель, систему регистрации изображения, связанную с компьютером, и оптический затвор, где система регистрации изображения выполнена в виде телевизионной камеры, связанной с компьютером. Оптический затвор установлен между предметом и лазерным усилителем с возможностью открытия и закрытия синхронно с частотой кадров телевизионной камеры.

Недостатком устройства является то, что каждый кадр формируется различным числом световых импульсов лазерного усилителя, так как экспозиция телевизионной камеры системы регистрации изображения больше периода повторения импульсов лазерного усилителя и отсутствует синхронизация работы камеры и лазерного усилителя. За счет того, что каждый кадр формируется несколькими импульсами сверхсветимости, он будет содержать искажения, связанные с нестабильностью разряда лазерного усилителя от импульса к импульсу и вибрациями элементов оптической схемы, а также изменениями наблюдаемого процесса или объекта за время между импульсами лазерного усилителя.

Известен лазерный проекционный микроскоп [Морозова Е.А., Прохоров A.M., Савранский В.В., Шафеев Г.А. Скоростная покадровая регистрация изображений биологических объектов с использованием лазерного проекционного микроскопа // Доклады АН СССР. - 1981. - Т.261. - №6. - С.1460-1462], включающий в себя лазерный усилитель на парах меди, объектив, конденсор, светофильтр, установленные соосно, резонатор, систему 100% зеркал, экран и систему регистрации изображения, представляющую собой высокоскоростную фотографическую установку ВФУ-1. Устройством обеспечивается получение изображения в проходящем свете от каждого импульса сверхизлучения лазерного усилителя.

Устройство исключает искажения, связанные с нестабильностью разряда и вибрацией элементов оптической схемы. Время экспозиции определяется длительностью импульса сверхизлучения лазерного усилителя. К недостаткам данного устройства можно отнести: ограниченное количество кадров, регистрируемое за одну съемку (40 кадров); сложность процесса обработки полученной информации, записанной на фотопленку; невозможность наблюдения объектов с большим коэффициентом отражения; невозможность мониторинга объекта в режиме реального времени; ограничение по скорости съемки, связанное с особенностями лазерного усилителя на парах меди. Такое устройство не позволяет своевременно реагировать на изменения объекта наблюдения и вмешиваться в наблюдаемый процесс.

Известен лазерный проекционный микроскоп [Абрамов Д.В., Галкин А.Ф., Жаренова С.В., Климовский И.И., Прокошев В.Г, Шаманская Е.Л. Визуализация с помощью лазерного монитора взаимодействия лазерного излучения с поверхностью стекло- и пироуглерода // Известия Томского политехнического университета - 2008. - Т.312. - №2. - С.97-101], выбранный в качестве прототипа, включающий в себя лазерный усилитель, с одной стороны от которого соосно установлены объектив и объект наблюдения, а с другой - система формирования изображения и система регистрации изображения либо система формирования изображения и экран, а также систему регистрации изображения, направленную на экран. Система регистрации изображения выполнена на основе CMOS-сенсора, связанного с компьютером. Лазерный усилитель выполнен на основе активной среды лазера на парах меди. Максимальная частота съемки системы регистрации изображения составляет 5000 кадров в секунду, частота работы лазерного усилителя составляет 16 кГц. Такой лазерный проекционный микроскоп позволяет визуализировать быстропротекающие процессы с временным разрешением 0,2 мс и отображать их на экране компьютера.

Недостатками этого лазерного проекционного микроскопа является рассогласование работы лазерного усилителя и системы регистрации изображения. В результате, даже при наблюдении статического объекта, кадры получаемого видеофайла существенно отличаются друг от друга по яркости. Это связано с отсутствием синхронизации работы системы регистрации изображения и лазерного усилителя, который работает в импульсно-периодическом режиме.

Если время экспозиции системы регистрации изображения tэ лежит в диапазоне

T<tэ<2T,

где T - период повторения импульсов лазерного усилителя, то изображение будет формироваться или одним, или двумя импульсами примерно с равной вероятностью, то есть яркость кадров будет отличаться в два раза.

Если 2T<tэ<3T,

то изображение будет формироваться или двумя, или тремя импульсами, то есть яркость кадров будет отличаться в полтора раза. Кроме скачков яркости изображения будут присутствовать искажения, связанные с нестабильностью разряда лазерного усилителя от импульса к импульсу и вибрациями элементов оптической схемы, а также с изменениями исследуемого объекта, отследить которые за время экспозиции системы регистрации изображения в таком устройстве не представляется возможным. В случае, если время экспозиции меньше периода работы лазерного усилителя, то полученный видеофайл будет содержать «пустые» кадры, которые получены в момент регистрации изображения в межимпульсный период лазерного усилителя, что снижает временное разрешение устройства в целом. Кроме этого, лазерный усилитель выполнен на основе лазера на парах меди, что ограничивает максимальное временное разрешение на уровне максимальных частот следования импульсов генерации данного лазера.

Задача, решаемая изобретениями, - регистрация быстропротекающих процессов посредством лазерного проекционного микроскопа с высоким временным разрешением и минимальными искажениями и, как следствие, повышение точности контроля и анализа исследуемых процессов.

Указанная задача решена за счет того, что лазерный проекционный микроскоп, так же, как в прототипе, содержит лазерный усилитель, с одной стороны от которого вдоль оптической оси расположены объектив и объект наблюдения, а с другой размещена система формирования изображения и экран; а также систему регистрации изображения.

Согласно первому варианту изобретения лазерный усилитель выполнен на основе активной среды лазера на парах бромида меди и связан с полупроводниковым источником накачки, система регистрации изображения выполнена на основе высокоскоростной CCD-камеры, направленной на экран и связанной с персональным компьютером и схемой синхронизации, которая связана с полупроводниковым источником накачки.

Во втором варианте лазерный проекционный микроскоп, так же, как в прототипе, содержит лазерный усилитель, с одной стороны от которого вдоль оптической оси расположены объектив и объект наблюдения, а с другой размещена система формирования изображения; а также систему регистрации изображения.

В отличие от прототипа лазерный усилитель выполнен на основе активной среды лазера на парах бромида меди и связан с полупроводниковым источником накачки, система регистрации изображения выполнена на основе высокоскоростной CCD-камеры, установленной соосно с лазерным усилителем и связанной с персональным компьютером и схемой синхронизации, которая связана с полупроводниковым источником накачки.

За счет того, что в лазерный проекционный микроскоп введена система регистрации изображения - высокоскоростная камера, связанная с компьютером, и схема синхронизации, связанная с полупроводниковым источником накачки лазерного усилителя на основе лазера на парах бромида меди и камерой, обеспечена регистрация изображения от единичного импульса подсветки (импульса сверхсветимости, генерируемого лазерным усилителем).

Технический результат заключается в уменьшении искажений, связанных с вибрацией элементов оптической схемы и нестабильностью разряда лазерного усилителя от импульса к импульсу; увеличении временного разрешения лазерного проекционного микроскопа, так как в качестве лазерного усилителя используется активная среда лазера на парах бромида меди, оптимальные частоты следования импульсов генерации которого выше, чем у лазера на парах меди; исключении искажений, связанных с изменениями исследуемого объекта (или процесса) в межимпульсный период, за счет регистрации изображений от единичного импульса сверхсветимости лазерного усилителя.

На фиг.1 представлена схема лазерного проекционного микроскопа при съемке изображения с экрана.

На фиг.2 представлена схема лазерного проекционного микроскопа при формировании изображения непосредственно на матрицу высокоскоростной камеры.

На фиг.3 приведены осциллограммы при различной скорости съемки: а) при частоте 28.8 кГц, б) при частоте 4.1 кГц, где кривая 1 - синхроимпульс, кривая 2 - импульс сверхизлучения лазерного усилителя, кривая 3 - импульс экспозиции. Уровни напряжений - ТТЛ - транзисторно-транзисторная логика.

Предлагаемый лазерный проекционный микроскоп (фиг.1) содержит лазерный усилитель 1 на основе активной среды лазера на парах бромида меди, с одной стороны от которого вдоль оптической оси расположены объектив 2 и объект наблюдения 3, а с другой - система формирования изображения 4 и экран 5. Система регистрации изображения 6 (СР) состоит из высокоскоростной CCD-камеры 7, направленной на экран 5, связанной с персональным компьютером 8 (ПК) и схемой синхронизации 9 (ССН). Полупроводниковый источник накачки 10 (ИН), связанный с лазерным усилителем 1, содержит формирователь высоковольтных импульсов 11 (ФВИ), связанный с лазерным усилителем 1 и с синхрогенератором 12 (СГ). Схема синхронизации 9 (ССН) включает в себя схему согласования 13 (СС), связанную с синхрогенератором 12 (СГ), формирователь синхроимпульса 14 (ФС), связанный со схемой согласования 13 (СС) оптоволоконным кабелем (15). Формирователь синхроимпульса 14 (ФС) связан с высокоскоростной CCD-камерой 7 системы регистрации изображения 6 (СР).

Во втором варианте лазерного проекционного микроскопа (фиг.2) система формирования изображения 4 и высокоскоростная CCD-камера 7 установлены соосно с лазерным усилителем 1.

В качестве лазерного усилителя 1 использована активная среда лазера на парах бромида меди [например, по патенту РФ №62742, МПК H01S 3/08, H01S 3/227, опубл. 27.04.2007]. Формирователь высоковольтных импульсов 11 (ФВИ) выполнен на основе мощных IGBT транзисторов [например, Тригуб М.В., Торгаев С.Н., Фёдоров В.Ф. Полупроводниковые источники накачки CuBr-лазеров // Известия Томского политехнического университета, 2010. - Т.317 - №4. - С.164-168]. Синхрогенератор 12 (СГ) представляет собой генератор задающих импульсов требуемой частоты и длительности, выполненный на основе цифровых логических элементов, например КР1533ЛА3. Схема согласования 13 (СС) представляет собой буферный элемент, например UCC37322, связанный с оптическим передатчиком, например HFBR-1522. Формирователь синхроимпульса 14 (ФС) содержит оптический приемник, например HFBR-2522, выход которого подключен к ждущему одновибратору, например, на основе цифровых логических элементов или микроконтроллера. В качестве высокоскоростной CCD-камеры 7 использована CCD-камера с управляемым затвором, например FastCam HiSpec1.

Излучение лазерного усилителя 1, работающего в режиме сверхсветимости (без зеркал) (фиг.1), фокусируется на объекте наблюдения 3 при помощи объектива 2. Отраженный от объекта наблюдения 3 сигнал собирается и направляется на вход лазерного усилителя 1 объективом 2, который усиливается лазерным усилителем 1 и проецируется системой формирования изображения 4 либо на экран 5, с которого производится съемка высокоскоростной CCD-камерой 7, либо непосредственно на матрицу высокоскоростной CCD-камеры 7 системы регистрации изображения 6 (СР) (фиг.2). Изображение с высокоскоростной CCD-камеры 7 передается в персональный компьютер 8 (ПК), где представляется в цифровом виде, что обеспечивает возможность обработки и анализа изображения. Для синхронизации работы системы регистрации изображения 6 (СР) и лазерного усилителя 1 применяется схема синхронизация 9 (ССН), которая обеспечивает управление затвором высокоскоростной CCD-камеры 7. Импульс синхронизации поступает на высокоскоростную CCD-камеру 7 с формирователя синхроимпульса 14 (ФС) с такой задержкой, чтобы импульс сверхсветимости лазерного усилителя 1 попал в экспозицию высокоскоростной CCD-камеры 7. Также формирователь синхроимпульса 14 (ФС) позволяет изменять скорость съемки высокоскоростной CCD-камеры 7 путем формирования синхроимпульса с частотой, кратной частоте работы лазерного усилителя 1. При этом частота работы лазерного усилителя 1 остается неизменной.

Для пояснения работы устройства на фиг.3 приведены осциллограммы, полученные с помощью осциллографа LeCroy WJ-324, синхроимпульса - кривая 1 (импульса, поступающего с формирователя синхроимпульса 14 (ФС) на вход высокоскоростной CCD-камеры 7), сверхизлучения - кривая 2 (оптический импульс излучения лазерного усилителя 1, полученный с помощью ФЭК-22), и импульса экспозиции высокоскоростной CCD-камеры 7 - момент, когда происходит регистрация изображения - кривая 3. На фиг.3а представлен вариант, когда система регистрации 6 (СР) регистрирует изображения каждого импульса сверхизлучения лазерного усилителя 1, на фиг.3б - каждого восьмого. Из осциллограмм видно, что с использованием схемы синхронизации 9 (ССН) работа системы регистрации изображения 6 (СР) и лазерного усилителя 1 синхронны, то есть за счет того, что на вход высокоскоростной CCD-камеры 7 поступает синхроимпульс (кривая 1), в каждую экспозицию (кривая 3) попадает импульс сверхизлучения (кривая 2) лазерного усилителя 1.

Таким образом, введение схемы синхронизации 9 (ССН), обеспечивающей синхронную работу лазерного усилителя 1 и системы регистрации изображения 6 (СР), в лазерный проекционный микроскоп, при прочих равных условиях (частота работы лазерного усилителя 1, характеристики системы регистрации изображения 6 (СР)), дает возможность регистрировать процесс (или объект наблюдения) в отдельном импульсе сверхизлучения лазерного усилителя 1 и, как следствие, повысить достоверность получаемой информации и точность контроля исследуемого процесса. Это обеспечивается за счет уменьшения искажений, связанных с вибрацией элементов схемы, нестабильностью разряда лазерного усилителя 1 от импульса к импульсу, изменениями, происходящими в исследуемом процессе или объекте за межимпульсный период импульсов сверхизлучения лазерного усилителя 1, в случае, если кадр будет формироваться несколькими импульсами излучения лазерного усилителя, что присуще аналогам предлагаемого лазерного проекционного микроскопа. Наибольшее временное разрешение лазерного проекционного микроскопа достигается при равенстве частоты работы лазерного усилителя 1 и скорости съемки высокоскоростной CCD-камеры 7, то есть когда регистрируется каждый импульс сверхизлучения лазерного усилителя 1. Использование в качестве лазерного усилителя 1 активной среды лазера на парах бромида меди позволяет регистрировать процессы с большим временным разрешением, так как оптимальные частоты следования импульсов излучения у нее выше, чем у среды лазера на парах меди, используемой в прототипе.

1. Лазерный проекционный микроскоп, содержащий лазерный усилитель, с одной стороны от которого вдоль оптической оси расположены объектив и объект наблюдения, а с другой размещена система формирования изображения и экран; а также систему регистрации изображения, отличающийся тем, что лазерный усилитель выполнен на основе активной среды лазера на парах бромида меди и связан с полупроводниковым источником накачки, система регистрации изображения выполнена на основе высокоскоростной CCD-камеры, направленной на экран и связанной с персональным компьютером и схемой синхронизации, которая связана с полупроводниковым источником накачки.

2. Лазерный проекционный микроскоп, содержащий лазерный усилитель, с одной стороны от которого вдоль оптической оси расположены объектив и объект наблюдения, а с другой размещена система формирования изображения; а также систему регистрации изображения, отличающийся тем, что лазерный усилитель выполнен на основе активной среды лазера на парах бромида меди и связан с полупроводниковым источником накачки, система регистрации изображения выполнена на основе высокоскоростной CCD-камеры, установленной соосно с лазерным усилителем и связанной с персональным компьютером и схемой синхронизации, которая связана с полупроводниковым источником накачки.



 

Похожие патенты:

Изобретение относится к области интерференционной оптики и может быть использовано, например, в микроскопах. .
Изобретение относится к медицине и может быть использовано для исследования и диагностики состояния биологического объекта или его части. .

Изобретение относится к области оптического приборостроения, нанотехнологий в оптике, в частности к области микроскопических исследований и получению цифровых изображений биологических объектов.

Изобретение относится к оптике, а именно к исследовательским микроскопам. .

Изобретение относится к области микроскопии. .

Изобретение относится к оптической измерительной технике и может быть использовано в микроскопии, локации, навигации при регистрации интенсивности отраженного лазерного излучения, а также при определении коэффициентов отражения и поглощения различных объектов.
Изобретение относится к области сканирующей зондовой микроскопии и профилометрии и может быть использовано для калибровки профилометров и сканирующих зондовых микроскопов.

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа (СЗМ) рельефа, линейных размеров и других характеристик объектов, преимущественно в биологии, с одновременным оптическим наблюдением объекта в проходящем через объект свете

Изобретение относится к области электронной техники и материаловедению и может быть использовано для неразрушающего контроля структур сложных молекул в реальном времени при исследовании и диагностике микро- и наноструктуры твердотельных объектов применительно к созданию новых полупроводниковых приборов, углеродных нанотрубок, металлов и сплавов, алмазных пленок, керамических материалов и приборов на их основе, а также в медицине и органической химии

Объектив может быть использован в люминесцентных микроскопах, работающих при больших перепадах температур в проходящем и отраженном свете, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а наблюдение производится в видимом диапазоне. Объектив содержит три компонента, первый компонент с оптической силой φ1 выполнен в виде двояковыпуклой линзы, второй компонент с оптической силой φ2 выполнен в виде двояковогнутой линзы, а третий компонент с оптической силой φ3 выполнен в виде двояковыпуклой линзы. Первый и третий компоненты выполнены из флюорита, а второй - из кварцевого стекла. Отношения оптических сил компонентов к оптической силе всего объектива φоб удовлетворяют следующим соотношениям: 1.5<φ1/φоб<2; |4|<φ2/φоб<|5|; 2<φ3/φоб<3, а отношения радиусов кривизны имеют следующие значения: в первом компоненте - |1.5|<R11/R12<|2.5|; во втором - |0.3|<R21/R22<|0.7|; в третьем - |0.8|<R31/R32<|1.7|, где R - радиус сферической поверхности, φ=1/f', f' - фокусное расстояние. Технический результат - увеличение рабочего расстояния для обеспечения возможности работать с толстыми кюветами в проходящем свете и с манипуляторами в отраженном, улучшение качества изображения по всему полю зрения и обеспечение допустимо малого коэффициента засветки. 1 ил., 1 пр., 1 табл.

Микрообъектив может быть использован для визуального наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности. Микрообъектив содержит последовательно расположенные пять компонентов, первый из которых выполнен в виде мениска, обращенного вогнутостью к пространству предметов. Второй положительный компонент выполнен склеенным из двояковыпуклой линзы и отрицательного мениска, обращенного вогнутостью к пространству предметов, третий двусклеенный компонент выполнен из отрицательного мениска, обращенного вогнутостью к пространству изображений, и двояковыпуклой линзы, а пятый компонент выполнен из одиночной двояковогнутой линзы и двух менисков, обращенных вогнутостью к пространству предметов. Коэффициент дисперсии νd положительных линз второго и третьего компонентов и мениска, расположенного за двояковогнутой линзой в пятом компоненте, νd≥70, а отрицательный мениск склеенной линзы третьего и двояковогнутая линза пятого компонентов имеют коэффициент дисперсии 42≤νd≤48. Технический результат - увеличение рабочего расстояния для обеспечения возможности работы с кюветами и манипуляторами, а также увеличение входной числовой апертуры при сохранении планапохроматической коррекции. 1 табл., 1 ил., 1 прилож.

Способ включает предварительное измерение технологические погрешностей линзовых узлов и расчет по ним величины изменения одного из воздушных промежутков и углы поворота каждого линзового узла вокруг оси наружного цилиндра линзового узла. Осуществляют осевой сдвиг и поворот всех линзовых узлов. Совмещают оптическую и механическую оси объектива путем радиального сдвига всех линзовых узлов. Объектив содержит размещенные в цилиндрическом отверстии корпуса с опорной торцевой плоскостью и наружным базовым резьбовым цилиндром линзовые узлы в общей цилиндрической оправе, установленной с возможностью осевого перемещения относительно опорной торцевой плоскости, и прокладное коррекционное кольцо и пружину для упругого осевого замыкания общей цилиндрической оправы. Объектив снабжен цилиндрической втулкой с прорезью, направленной вдоль оси цилиндрического отверстия корпуса, втулка жестко соединена с общей цилиндрической оправой линзовых узлов в радиальном направлении и упругим замыканием в осевом направлении пружиной. Втулка может перемещаться вдоль оси цилиндрического отверстия корпуса и разворачиваться вокруг этой оси. Цилиндрическое отверстие корпуса выполнено с эксцентриситетом Δк относительно наружного базового резьбового цилиндра объектива, а внутреннее отверстие общей цилиндрической оправы линзовых узлов выполнено с эксцентриситетом Δo относительно внешнего цилиндра общей цилиндрической оправы. Технический результат - повышение качества юстировки с одновременным обеспечением ее автоматизации. 2 н.п. ф-лы, 1 ил.

Микрообъектив может быть использован для исследования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов. Микрообъектив содержит первый компонент I с оптической силой ФI в виде фронтального мениска, обращенного вогнутостью к пространству объекта, и двояковыпуклой положительной линзы, второй компонент II с оптической силой ФII, состоящий из положительной линзы, склеенной из отрицательного мениска, обращенного вогнутостью к пространству изображения, и двояковыпуклой линзы, двояковыпуклой линзы с оптической силой ФII5, склеенной линзы с оптической силой ФII6,7, состоящей из отрицательного мениска, обращенного вогнутостью к пространству изображения, и двояковыпуклой линзы, и двояковогнутой линзы. Третий компонент III с оптической силой ФIII содержит плосковыпуклую линзу и мениск, обращенный вогнутостью к пространству объекта и склеенный из положительного и отрицательного менисков. Соотношение оптических сил линз и объектива в целом и коэффициенты дисперсии материалов линз удовлетворяют условиям, указанным в формуле изобретения. Технический результат - повышение качества изображения в результате исправления кривизны изображения и хроматической разности увеличений при увеличении числовой апертуры и линейного поля зрения. 1 з.п. ф-лы, 1 ил., 1 прилож.

Микроскоп содержит платформу для размещения образца, выполненную с возможностью перемещения по крайней мере в вертикальном и горизонтальном направлениях, источник лазерного излучения для направления излучения, падающего на исследуемый образец через полуволновую пластинку, установленную на автоматизированной вращающейся платформе, систему зеркал, фокусатор, приемную часть для автоматической настройки положения исследуемой точки поверхности образца в фокусе фокусатора при приеме отраженного от исследуемого образца излучения на частотах второй гармоники и двухфотонной люминесценции. Фокусатор представляет собой систему линз, или расширитель светового пучка и градиентную линзу, или объектив, закрепленные на автоматизированном микрометрическом трансляторе, связанном с контроллером перемещения фокусатора. Приемная часть включает детектор, используемый для приема отраженного излучения через поляризатор, устройство спектральной фильтрации и короткофокусную линзу на входную апертуру оптического волокна, связанного с устройством спектральной фильтрации. Технический результат - обеспечение автоматической настройки положения исследуемой точки поверхности образца в фокусе при приеме отраженного от образца излучения. 2 н.п. ф-лы, 13 ил.

Изобретение относится к оптическому приборостроению в области медицины и направлено на повышение эффективности обнаружения клеточных аномалий при компьютерном анализе, а также в рамкам исследования, объединяющего в себе собственно процесс диагностики и одновременно обучение диагностике, что обеспечивается за счет того, что способ согласно изобретению содержит следующие этапы: осуществляют обработку пробы для обеспечения различения патологических клеток среди здоровых клеток пробы, выполняют, по меньшей мере, одно первое получение изображений пробы, размещенной на аналитической пластинке, таким образом, чтобы получить множество изображений, каждое из которых представляет одну зону аналитической пластинки, при этом упомянутые изображения, расположенные рядом друг с другом, образуют изображение всей пробы так, чтобы создать виртуальную аналитическую пластинку. Отмечают базовую плоскость аналитической пластинки, состоящей из предметной пластинки и покрывной пластинки, расположенной над предметной пластинкой, для получения изображений, при этом упомянутая базовая плоскость определена поверхностью предметной пластинки или покрывной пластинки; и осуществляют, по меньшей мере, одно второе получение изображений на толщине, отличной от толщины пробы первого получения так, чтобы получить множество изображений, соответствующих срезу пробы, осуществленному на разной толщине. 15 з.п. ф-лы, 3 ил.

Изобретение относится к области приборостроения и может быть применено для точной ориентации объекта в целях наблюдения или обработки, например, в микроскопах. Устройство для позиционирования объекта содержит средство угловой ориентации, состоящее из подвижной и неподвижной частей, и средство вертикальной подачи, связанное с подвижной частью средства угловой ориентации. Средство угловой ориентации обеспечивает угловую ориентацию объекта относительно двух пересекающихся взаимно перпендикулярных горизонтальных осей и может быть выполнено в виде сферического шарнира. Средство вертикальной подачи обеспечивает перемещение объекта относительно подвижной части средства угловой ориентации вдоль вертикальной оси и может быть выполнено в виде линейного электродвигателя или пъезоприводного исполнительного механизма. Обеспечивается нахождение исследуемого фрагмента поверхности в фокусе объектива при выполнении угловой ориентации объектов различной толщины. 7 з.п. ф-лы, 6 ил.
Наверх