Способ получения нановискерных структур оксида меди



Способ получения нановискерных структур оксида меди
Способ получения нановискерных структур оксида меди
Способ получения нановискерных структур оксида меди

 

C25B1 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2464224:

Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (RU)

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению нановискерных структур оксида меди, и может быть использовано в технологии катализаторов. Поливольфраматный расплав, содержащий 10 мол.% K2WO4, 55 мол.% LI2WO4 и 35 мол.% WO3, подвергают электролизу в импульсном потенциостатическом режиме. Напряжение составляет 1060-1090 мВ, длительность импульса 0,1 сек. Применяют платиновый анод. В качестве катода используют медную фольгу. Способ позволяет получить нановискерные структуры оксида меди. 3 ил., 3 пр.

 

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению нановискерных структур оксида меди, и может быть использовано для получения катализаторов при парофазном и жидкофазном окислении в технологиях органического синтеза: получение метанола, витаминов, органических кислот, а также для получения покрытий в селективных поглотителях солнечной энергии.

Известен способ получения нанокристаллического оксида меди (Заявка WO 2009144035, опубл. 2009 г.). Согласно изобретению исходное соединение меди вносят в реакционную камеру, термически обрабатывают путем пульсирующего потока при температуре от 200 до 500°C и выводят полученный материал оксида меди из реактора. Описание к WO 2009144035 не содержит информации о том, что известным способом можно получать нановискерные структуры оксида меди.

Таким образом, из уровня техники сведения по получению нановискерных структур оксида меди (CuO) не обнаружены.

В заявляемом изобретении получение нановискерных структур оксида меди включает электролиз поливольфраматного расплава, содержащего 10 мол.% K2WO4, 55 мол.% Li2WO4 и 35 мол.% WO3, в импульсном потенциостатическом режиме при напряжении 1060-1090 мВ и длительности импульса напряжения 0.1 сек с применением платинового анода, при этом в качестве катода используют медную фольгу.

В результате экспериментального осуществления заявленного способа установлено, что формирование указанных структур происходит в результате электрохимического процесса. Предположительно, образование этих структур связано с ионизацией растворенного в расплаве кислорода и последующего его взаимодействия с медной подложкой.

Новый технический результат, достигаемый заявленным изобретением, заключается в получении нановискерных структур оксида меди (CuO).

Заявленный способ осуществляют следующим образом.

В ходе электролизного получения нановискерных структур оксида меди поддерживают температуру 700°C. В качестве анода используют платиновую проволоку, а в качестве электрода сравнения - платиновую фольгу площадью 1 см2, полупогруженную в расплав.

Одиночный импульс напряжения прямоугольной формы и определенной длительности подают на ячейку, величина напряжения при этом составляет 1060-1090 мВ. Источником питания служит потенциостат ПИ-50-1. Длительность и величину импульса напряжения задают с помощью программатора ПР-8.

При этом на медном катоде формируется поликристаллический осадок. Для изучения осадка использовали различные методы: рентгеноспектральный, рентгеноструктурный и электронной микроскопии. Морфологию осадков определяли с помощью электронного микроскопа JSM-5900 LV.

Исследования показали, что полученный материал представляет собой нановискерные структуры оксида меди CuO, состоящие из вискеров толщиной порядка 100 нм и длиной несколько микрон.

Пример 1. Нановискерные структуры получали электролизом расплава 10 мол.% K2WO4, 55 мол.% Li2WO4 и 35 мол.% WO3 с использованием платинового анода. На ячейку подавали одиночный импульс напряжения величиной 1060 мВ, длительностью 0.1 сек. При этом на медном катоде формировался поликристаллический осадок, состоящий из вискерных структур CuO (фиг.1). Диаметр вискеров 100 нм, их длина - 800-2300 нм.

Пример 2. Нановискерные структуры получали электролизом расплава 10 мол.% K2WO4, 55 мол.% Li2WO4 и 35 мол.% WO3 с использованием платинового анода. На ячейку подавали импульс напряжения величиной 1090 мВ, длительностью 0.1 сек. При этом на медном катоде формировался поликристаллический осадок, состоящий из вискерных структур CuO (фиг.2). Диаметр вискеров 100 нм, их длина 1700-3000 нм.

Пример 3. Проводили электролиз расплава 10 мол.% K2WO4, 55 мол.% Li2WO4 и 35 мол.% WO3 с использованием платинового анода. На ячейку подавали импульс напряжения величиной 1110 мВ, длительностью 0.1 сек. При этом на медном катоде вискерные структуры CuO получены не были (фиг.3).

Таким образом, приведенные данные подтверждают, что совокупность заявленных признаков способа обеспечивает получение нановискерных структур оксида меди CuO.

Способ получения нановискерных структур оксида меди, характеризующийся тем, что нановискерные структуры получают электролизом поливольфраматного расплава, содержащего 10 мол.% K2WO4, 55 мол.% Li2WO4 и 35 мол.% WO3, в импульсном потенциостатическом режиме при напряжении 1060-1090 мВ и длительности импульса напряжения 0,1 с с применением платинового анода, при этом в качестве катода используют медную фольгу.



 

Похожие патенты:

Изобретение относится к тепловой ячейке отопительной батареи и может быть использовано в технике для нагрева воды. .

Изобретение относится к изготовлению коррозионно-стойких электродов, применяемых для выделения металлов из промышленных растворов методом электроэкстракции, при нанесении гальванических покрытий драгоценными и цветными металлами, электрохимическом производстве хлора и кислорода, при электрохимической катодной защите от коррозии металлических конструкций, а также и в других различных областях промышленности.

Изобретение относится к водородной энергетике. .

Изобретение относится к катоду для диафрагменных электролизеров, в частности для использования в диафрагменных электролизерах для получения хлора и щелочи, ограниченному электропроводящей перфорированной поверхностью и имеющему внутреннее пространство, содержащее два наложенных один на другой элемента, предназначенных для улучшения распределения жидкости и электрического тока.

Изобретение относится к катоду для диафрагменных электролизеров, в частности для использования в диафрагменных электролизерах для получения хлора и щелочи, ограниченному электропроводящей перфорированной поверхностью и имеющему внутреннее пространство, содержащее два наложенных один на другой элемента, предназначенных для улучшения распределения жидкости и электрического тока.

Изобретение относится к области электротехники, в частности к электролизеру для высокотемпературного электролиза, преимущественно реагента в жидкой или паровой фазе, который работает в аллотермическом режиме.

Изобретение относится к области электротехники, в частности к электролизеру для высокотемпературного электролиза, преимущественно реагента в жидкой или паровой фазе, который работает в аллотермическом режиме.
Изобретение относится к области неорганической химии и может быть использовано в технологии катализаторов и сорбентов. .
Изобретение относится к области химической промышленности, а именно к способам получения оксидов металлов. .

Изобретение относится к наноиндустрии и химической промышленности и может быть использовано при производстве нанопорошков оксида меди. .
Изобретение относится к неорганическому синтезу, а именно к способам получения молибдованадофосфорных гетерополикислот. .

Изобретение относится к области неорганической химии и может быть использовано, в частности, для приготовления катализатора, применяемого для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания в выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания.

Изобретение относится к неорганической химии и может быть использовано, в частности, для приготовления катализатора, применяемого для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей.

Изобретение относится к неорганической химии и может быть использовано, в частности, для приготовления катализатора, применяемого для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей.
Изобретение относится к получению нанокристаллических порошков оксидов металлов. .
Наверх