Пассивный датчик переменного магнитного поля

Датчик относится к измерительной технике и может быть применен для преобразования переменного магнитного поля в электрическое напряжение в составе измерительной аппаратуры и в различных системах автоматического управления, а также в качестве питающего элемента. Техническим результатом изобретения является создание датчика переменного магнитного поля, который не требует для своей работы дополнительного питания, повышение чувствительности и расширение диапазона измеряемых переменных магнитных полей. Технический результат достигается за счет того, что пассивный датчик переменного магнитного поля содержит подложку и, по меньшей мере, один магниточувствительный элемент из многослойного или объемного магнитоэлектрического композиционного материала, содержащего магнитострикционную и пьезоэлектрическую фазы, на который нанесены токопроводящие обкладки. Датчик содержит также постоянный магнит, вектор магнитного поля которого сонаправлен с вектором поляризации пьезоэлектрической фазы магниточувствительного элемента. Кроме того, повышение чувствительности и расширение диапазона измеряемых величин магнитного поля осуществляются за счет достижения максимального МЭ эффекта в чувствительном элементе пассивного датчика переменного магнитного поля. 2 ил.

 

Изобретение относится к измерительной технике и может быть применено для преобразования переменного магнитного поля в электрическое напряжение в составе измерительной аппаратуры и в различных системах автоматического управления, а также в качестве питающего элемента.

Известны устройства для измерения магнитной индукции, например датчики, использующие эффект Холла. Конструктивно они представляют собой полупроводниковую пластину прямоугольной формы. Под действием тока I и магнитной индукции В, векторы которых взаимно перпендикулярны, на обкладках датчика возникает измерительное напряжение UH. Величина этого напряжения зависит от геометрии (длины L и толщины D) датчика, тока I, коэффициента Холла RH и магнитной индукции В:

Материалами для изготовления датчика Холла, как правило, служат полупроводниковые материалы: кремний, арсенид индия (InAs), антимонид индия (InSb) и др.

Недостатком таких устройств является низкая чувствительность и низкая точность измерений, особенно в области малых значений индукции, так как при этом необходимо в значительной степени увеличивать протекающий ток, а также недостаточный диапазон измерения магнитных полей. Кроме того, датчики Холла являются активными элементами и всегда требуют для своей работы дополнительное питание из-за особенностей применения в них полупроводниковых материалов.

Известен магнитоэлектрический (МЭ) материал, который, благодаря наличию в нем магнитоэлектрического эффекта, позволяет преобразовывать переменное магнитное поле в электрическое напряжение без дополнительных затрат энергии. Такие МЭ материалы могут применяться в датчиках магнитного поля.

Прототипом предлагаемого изобретения является магнитоэлектрический датчик постоянного магнитного поля (Патент №2244318 МПК: G01R 33/02 - Датчик постоянного магнитного поля), содержащий два МЭ чувствительных элемента, на торцы которых нанесены токопроводящие обкладки. МЭ элементы выполнены из многослойного или объемного композиционного МЭ материала состава феррит - пьезокерамика с различным процентным содержанием пьезокерамики.

Основные недостатки такого датчика - невозможность измерений переменных магнитных полей и необходимость дополнительного питания для работы.

В зависимости от применения датчика токопроводящие обкладки могут располагаться на разных сторонах магниточувствительного элемента [Шарапов В.М., Мусиенко М.П., Шарапока Е.В. Пьезоэлектрические датчики. - М.: Изд-во «Техносфера», 2006, с.108, 208].

Технической задачей изобретения является создание датчика переменного магнитного поля, который не требует для своей работы дополнительного питания (пассивный).

Поставленная задача достигается тем, что пассивный датчик переменного магнитного поля, содержащий подложку и, по меньшей мере, один магниточувствительный элемент из многослойного или объемного магнитоэлектрического композиционного материала, содержащего магнитострикционную и пьезоэлектрическую фазы, на который нанесены токопроводящие обкладки, причем пассивный датчик переменного магнитного поля содержит постоянный магнит, вектор магнитного поля которого сонаправлен с вектором поляризации пьезоэлектрической фазы магниточувствительного элемента.

На фиг.1 представлен пассивный датчик переменного магнитного поля. На фиг.2 представлен график зависимости напряжения на выходе датчика магнитного поля от напряженности переменного магнитного поля частотой 1кГц.

Датчик содержит несущую подложку 1, постоянный магнит 2, который может быть изготовлен в виде магнитной пленки, расположенной под магниточувствительным МЭ элементом 3. МЭ элемент 3 состоит из МЭ материала, содержащего пьезоэлектрический 4 и магнитострикционный 5 слои, на противоположных поверхностях МЭ материала токопроводящие обкладки 6 могут быть нанесены, например, параллельно подложке. Для обеспечения линейной зависимости МЭ эффекта пьезоэлектрический слой 4 предварительно поляризуется.

Датчик работает следующим образом. При приложении к магниточувствительному МЭ элементу 3, находящемуся в постоянном магнитном поле магнита 2, переменного магнитного поля Н магнитострикционный слой 5 из-за магнитострикции меняет свою форму, деформация передается в пьезоэлектрическую фазу слоя 4 и, как результат, появляется измерительное напряжение UH на токопроводящих обкладках 6 МЭ композиционного материала. Как известно [М.И.Бичурин, В.М.Петров, Д.А.Филиппов, Г.Сринивасан, С.В.Нан. Магнитоэлектрические материалы. - М.: Изд-во «Академия Естествознания», 2006. - 296 с.], возникающее электрическое напряжение UH зависит от измеряемого переменного магнитного поля Н, отношения толщины пьезоэлектрического и магнитострикционного слоев n, толщины пьезоэлектрического слоя h, пьезомагнитной константы d, пьезоэлектрической константы напряжения g, податливости пьезоэлектрического (sE) и магнитострикционного (sH) материалов, коэффициента электромеханического взаимодействия k2:

Пассивность датчика переменного магнитного поля достигается благодаря появлению МЭ эффекта в композиционном материале под действием постоянного магнитного поля от постоянного магнита (магнитной пленки). При МЭ эффекте деформация магнитострикционного слоя 5 МЭ композиционного материала, под действием измеряемого магнитного поля, приводит к возникновению пропорционального электрического напряжения в пьезоэлектрической фазе слоя 4.

МЭ материал обычно представляет собой композиционную керамику, состоящую из двух компонентов: феррита и пьезокерамики, обладающих магнитострикцией и пьезоэффектом, соответственно. Существуют объемные МЭ материалы, состоящие из смеси феррита и пьезокерамики, также существуют слоистые МЭ материалы, в которых чередуются слои феррита и пьезокерамики.

Максимальный МЭ эффект достигается подбором величины магнитного поля постоянного магнита, выбором объемных долей пьезоэлектрической и магнитострикционной фаз [М.И.Бичурин, В.М.Петров, Д.А.Филиппов, Г.Сринивасан. С.В.Нан. Магнитоэлектрические материалы. - М.: Изд-во «Академия Естествознания», 2006. - 296 с.]. На фиг.2 представлен график зависимости возникающего электрического напряжения пассивного датчика переменного магнитного поля (фиг.1) под действием переменного магнитного поля частотой 1кГц и напряженностью 30, 20 и 10 Э. В качестве пьезоэлектрического слоя применена пьезокерамика ЦТС толщиной 0,28 мм, в качестве магнитострикционного слоя - никель толщиной 0,03 мм с каждой стороны. Для достижения максимального отклика от магниточувствительного элемента величина постоянного магнитного поля выбрана из соображений обеспечения наибольшей намагниченности магнитострикционной фазы и составляет 80 Э. Как видно из графика, зависимость величины возникающего электрического напряжения датчика от напряженности переменного магнитного поля носит линейный характер как результат предварительной поляризации Р пьезоэлектрической фазы.

Таким образом, предлагаемое изобретение позволяет измерять переменные магнитные поля и не требует для своей работы дополнительных затрат энергии. Кроме того, оно повышает чувствительность и расширяет диапазон измеряемых переменных магнитных полей за счет достижения максимального МЭ эффекта в чувствительном элементе пассивного датчика переменного магнитного поля.

При изготовлении пассивного датчика переменного магнитного поля применяются хорошо отработанные керамические технологии для получения МЭ композиционного материала, что обуславливает его более низкую себестоимость и высокую надежность по сравнению с датчиками магнитного поля на эффекте Холла.

Пассивный датчик переменного магнитного поля, содержащий подложку и, по меньшей мере, один магниточувствительный элемент из многослойного или объемного магнитоэлектрического композиционного материала, содержащего магнитострикционную и пьезоэлектрическую фазы, на который нанесены токопроводящие обкладки, отличающийся тем, что пассивный датчик переменного магнитного поля содержит постоянный магнит, вектор магнитного поля которого сонаправлен с вектором поляризации пьезоэлектрической фазы магниточувствительного элемента.



 

Похожие патенты:

Изобретение относится к информационно-измерительной технике, в частности к магнитометрии, и может быть использовано для получения и визуализации распределенных в пространстве и периодически изменяющихся во времени магнитных полей внутри тела с неоднородными магнитными свойствами без механического проникновения в него.

Изобретение относится к измерительной технике и может использоваться для выбора безопасных для человека мест его жизнедеятельности и определения местоположения скрытой электропроводки при проведении ремонтных работ.

Изобретение относится к измерению электрических и магнитных величин, а именно к устройствам и способам измерения напряженности магнитных полей. .

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам в виде цифрового кода.

Изобретение относится к электрическим испытаниям на восприимчивость к электромагнитному полю (ЭМП) изделий электрооборудования и/или электронных систем автотранспортных средств (АТС) в заданном диапазоне частот, при котором испытуемые изделия подвергают воздействию от одного или нескольких источников поляризованного ЭМП, параметры которого выбирают из условий: Здесь hi - шаг перестройки воздействующего ЭМП по частоте; Q - параметр, задаваемый вначале испытаний; fнi - несущая частота воздействующего ЭМП; Ев - напряженность воздействующего ЭМП; Еmin.доп - минимально-допустимый уровень электромагнитной стойкости изделий электрооборудования; fmin - наименьшая граничная частота в заданном диапазоне частот.

Изобретение относится к области измерительных приборов для научных исследований. .

Изобретение относится к устройствам, использующим магнитометрию на железных дорогах, в частности измерению напряженности магнитного поля в рельсовых стыках. .

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода.

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода.

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода

Изобретение относится к области измерительной техники и твердотельной электроники и может быть использовано при создании миниатюрных датчиков магнитного поля для применения в магниточувствительных электронных микросистемах управления приводами, бесконтактных переключателях, дефектоскопии, при создании мобильных магнитолокаторов наземного воздушного и космического базирования и аппаратуры навигации

Изобретение относится к области измерения параметров магнитного поля конструкций из ферромагнитного материала, например корпуса судна

Изобретение относится к области электроизмерительной техники и предназначено для измерений магнитного поля надводного или подводного объекта при наладке его системы электромагнитной компенсации

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних специальных учебных заведениях по курсу физики для изучения и углубления знаний физических законов и явлений

Изобретение относится к датчиковому устройству измерения магнитного поля. Датчиковое устройство измерения магнитного поля содержит датчиковую часть, которая включает в себя магнитоимпедансное устройство, имеющее магнитную аморфную структуру; стержневую часть сердечника, которая направляет магнитное поле к магнитной аморфной структуре и расположена в продольном направлении относительно магнитной аморфной структуры; и средство подавления магнитного поля, которое создает корректирующее магнитное поле, которое подавляет магнитное поле окружающей среды, обусловленное земным магнетизмом, входящее в магнитную аморфную структуру. Технический результат - повышение эффективности измерений при подземной электромагнитной разведке. 12 з.п. ф-лы, 14 ил.

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли. Сущность изобретения заключается в том, что цифровой феррозондовый магнитометр содержит задающий генератор, выход которого соединен с входом логического блока, выход которого соединен с входом формирователя синусоиды, выход которого соединен с первыми входами трех феррозондов, выходы которых соединены с входами трех избирательных усилителей, выходы которых соединены с входами трех устройств выборки-хранения, первые выходы которых соединены со вторыми входами трех феррозондов, при этом в него введены три мультиплексора и три инвертора, входы которых соединены с третьими выходами трех устройств выборки-хранения, а выходы соединены со вторыми входами трех мультиплексоров, первые входы которых соединены со вторыми выходами трех устройств выборки-хранения, а выходы соединены с входами трех аналого-цифровых преобразователей. Технический результат - повышение быстродействия устройства. 2 ил.

Изобретение относится к поверке магнитоизмерительных систем, в том числе предназначенных для поиска ферромагнитных объектов, без демонтажа входящих в систему магнитометрических средств. Трехкомпонентную меру магнитного момента ориентируют вдоль осей координат системы поиска, устанавливают на некотором расстоянии от системы и задают компоненты радиус-вектора от центра системы координат до центра меры. Затем воздействуют на систему полем заданного магнитного момента, воспроизводимого мерой, и по показаниям бортовых магнитометрических средств определяют (косвенно измеряют) координаты источника магнитного поля и компоненты его магнитного момента. После этого определяют погрешности всей системы как разности между измеренными и заданными величинами, а также определяют погрешности каждого магнитометрического средства. Техническим результатом заявленного способа является определение погрешностей системы поиска с учетом погрешностей, вносимых носителем этой системы. 1 ил., 2 табл.

Изобретение относится к средствам для обеспечения жизнедеятельности инвалидов по зрению, а именно предназначено для получения информации и облегчения ориентации незрячих людей в пространстве. Способ ориентации в пространстве, навигации и информирования людей с нарушением зрительных функций заключается в том, что с помощью радиомаяка, размещаемого в одном месте ориентации, передают радиосигналы, а с помощью находящегося у человека радиоинформатора принимают эти радиосигналы и передают их на устройство воздействия на человека, сигнализируя о близком нахождении места ориентации. При этом первоначально с помощью радиоинформатора передают радиосигналы, а передачу радиосигналов с помощью радиомаяка осуществляют после приема им радиосигналов от радиоинформатора, информирующих о нахождении человека в зоне обнаружения. При приеме радиосигнала радиоинформатором измеряют интенсивность принятого радиосигнала, в зависимости от него изменяют значение параметра воздействия на человека и определяют направление приближения к радиомаяку. Система содержит радиомаяк для размещения в месте ориентации и радиоинформатор, находящийся у человека. Радиомаяк включает источник и приемник радиосигналов и блок управления. Радиоинформатор включает источник и приемник радиосигналов, который соединен с устройством воздействия на человека. Использование изобретения позволяет повысить точность ориентации и не загромождает эфир лишней радиоинформацией. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к инвазивным медицинским устройствам. Медицинский зонд содержит вводимую трубку, имеющую продольную ось и дистальный конец, дистальный кончик, расположенный на дистальном конце вводимой трубки и сконфигурированный для введения в контакт с тканью тела, стык, который соединяет дистальный кончик с дистальным концом вводимой трубки, и датчик стыка, заключенный внутри зонда, для распознавания положения дистального кончика относительно дистального конца вводимой трубки, причем датчик стыка содержит первый и второй подузлы, которые расположены внутри зонда на противоположных соответствующих сторонах стыка, и каждый подузел содержит один или более магнитных измерительных преобразователей. Стык содержит упругий элемент, который сконфигурирован, чтобы деформироваться в ответ на давление, прикладываемое на дистальный кончик, когда он входит в соприкосновение с тканью, при этом упругий элемент содержит трубчатую деталь из эластичного материала, имеющую винтовой срез вдоль части длины детали. Устройство для исполнения медицинской процедуры включает зонд и процессор, который присоединен с возможностью подавать ток к одному из первого и второго подузлов, заставляя тем самым один из подузлов генерировать, по меньшей мере, одно магнитное поле, и для приема и обработки одного или более сигналов, выводимых другим из первого и второго подузлов относительно указанного, чтобы обнаруживать изменения в положении дистального кончика относительно дистального конца вводимой трубки. Устройство для обнаружения перемещения стыка в узле содержит первый и второй сенсорные подузлы, которые расположены внутри узла на противоположных соответствующих сторонах стыка, при этом каждый подузел содержит один или более магнитных измерительных преобразователей, и процессор, выполненный с возможностью обнаруживания посредством обработки одного или более сигналов осевое сжатие стыка и угловое отклонение стыка. Способ выполнения медицинской процедуры на ткани в теле пациента включает применение в теле зонда и продвижение его таким образом, чтобы дистальный кончик входил в соприкосновение и прикладывал давление на ткань, подачу тока к одному из первого и второго подузлов и прием и обработку одного или более сигналов, выводимых другим из первого и второго подузлов относительно указанного, по меньшей мере, одного магнитного поля так, чтобы обнаруживать изменение в положении дистального кончика. Использование изобретения позволяет повысить надежность и легкость манипулирования катетером в теле. 4 н. и 23 з.п. ф-лы, 3 ил.
Наверх