Способ получения одностенных углеродных нанотрубок

Изобретение может быть использовано при получении наполнителей для конструкционных и функциональных материалов. В реакционную зону реактора подают реакционную смесь, включающую прекурсоры углерода и катализатора, в токе газа-носителя. В качестве прекурсора углерода используют углеродсодержащие соединения, выбранные из группы: метан, этан, пропан, бензол, толуол, ксилолы, метанол, этанол, пропанол, изопропанол, этилен, пропилен, ацетилен или их смеси. В качестве прекурсора катализатора используют соединения переходных металлов, выбранные из группы: дициклопентадиенильные соединения переходных металлов общей формулы (h-C5H5)2M, карбонилы переходных металлов, либо их смеси. Синтез одностенных углеродных нанотрубок осуществляют в присутствии активаторов роста, в качестве которых используют пары воды и/или тиофен, или его гомологи при температуре 1050-1200°С. Температуру реакционной смеси на входе в реакционную зону поддерживают выше температуры испарения прекурсора катализатора, но ниже температуры его разложения. Повышается выход и качество одностенных углеродных нанотрубок. 2 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к области нанотехнологии, в частности к каталитическому способу получения углеродного волокнистого материала, состоящего из одностенных углеродных нанотрубок, который может быть использован в качестве компонента (наполнителя) при создании конструкционных и функциональных композиционных материалов, в том числе полимерных и керамических.

Основными способами получения углеродных нановолокон являются электродуговой, лазерный, электролизный и каталитический. В промышленности целесообразно использовать каталитический CVD (chemical vapor deposition - метод осаждения из газовой фазы) метод, который позволяет применять сравнительно простое оборудование, организовать непрерывный режим синтеза, получать углеродные нановолокна с высоким выходом [Ando Y., Zhao X., Sugai Т.,. Kumar M: Growing carbon nanotubes. Materials Today 22-29 (2004)]. Сущность процесса заключается в том, что углеродсодержащий газ (прекурсор углерода) подвергается разложению на металлическом катализаторе при температурах от 500 до 1500°С. Процесс проводят одним из двух методов: выращиванием волокна на подложке либо выращиванием волокна в потоке газа.

Известен способ получения массива выровненных многослойных нанотрубок длиной порядка 6 мм методом выращивания наноструктур в потоке газа в вертикальном реакторе проточного типа. В качестве прекурсора углерода использовался ксилол, в качестве прекурсора катализатора - ферроцен, который подавали в реакционную зону с температурой 850°С вместе с ксилолом при помощи газа-носителя: смеси аргона с водородом [X-F. Zhang et al.: Rapid growth of well-aligned carbon nanotubes arrays. Chemical Physics Letters, 362 (2002), 285-290]. К недостаткам этого метода относятся малая длина углеродных структур и отсутствие ориентации.

Известен способ получения сантиметровых разветвленных жгутов углеродных нановолокон методом CCVD толуола при температуре 1000-1200°С и расходе газа 1000-2500 мл/мин с использованием в качестве прекурсора катализатора - ферроцена [X-Y. Guo: Macroscopic multibranched carbon trees generated from chemical vapor deposition of toluene. Carbon, 43 (2005), 1084-1114]. Недостатком этого метода является разветвленная, сильно дефектная структура получаемых углеродных наноструктур.

Наиболее близким по технической сущности к заявляемому изобретению (прототипом), является синтез жгутов однослойных углеродных нанотрубок (ОУНТ) каталитическим разложением н-гексана, содержащего в качестве активирующей добавки 0,4 мас.% тиофена, в вертикальном реакторе проточного типа, с вводом катализатора (ферроцена) в виде взвеси в жидком углеводороде [международная публикация WO/2003/072859].

Недостатками прототипа являются получение жгутов ОУНТ длиной до 20 см в виде комка перепутанных нитей с высоким содержанием примесей и других углеродных структур, что затрудняет их использование для создания композиционных материалов.

Изобретение направлено на получение волокнистого материала, состоящего из одностенных углеродных нанотрубок с высоким удельным выходом продукта при низком содержании технологических примесей и дефектов структуры. Данный технический результат достигается использованием при синтезе одностенных углеродных нанотрубок и наночастиц реакционной смеси, состоящей из прекурсора углерода, прекурсора катализатора и активатора роста одностенных углеродных нанотрубок, подаваемой в реакционную зону при температуре выше температуры испарения прекурсора катализатора, но ниже температуры разложения прекурсора катализатора, и значительно ниже температуры синтеза одностенных углеродных нанотрубок.

В качестве прекурсора катализатора синтеза одностенных углеродных нанотрубок и наночастиц используют дициклопентадиенильные соединения переходных металлов общей формулы (h-C5H5)2M, карбонилы переходных металлов, либо их смеси.

В качестве активатора роста одностенных углеродных нанотрубок и наночастиц используют серо- и кислородсодержащие соединения либо их смеси.

Синтез одностенных углеродных нанотрубок ведут при температуре пиролиза прекурсора углерода в пределах 1050-1200°С в процессе разложения прекурсора углерода, подаваемого в токе газа носителя. В качестве прекурсора углерода используют алифалтические, ароматические углеводороды, алифатические спирты, непредельные углеводороды и\или их смеси. В качестве газа-носителя используется водород, а также водород в смеси с инертными газами, такими как аргон, гелий, азот.

Способ синтеза углеродного волокнистого материала, состоящего из одностенных углеродных нанотрубок и наночастиц, методом CVD заключается в подаче реакционной смеси, состоящей из прекурсора катализатора, прекурсора углерода и активатора роста одностенных углеродных нанотрубок и наночастиц в верхнюю часть реакционной зоны в токе газа-носителя. Ввод реакционной смеси устроен таким образом, чтобы обеспечить подачу реакционной смеси в центральную часть реактора, нагретого до температуры синтеза ОУНТ, с температурой выше температуры испарения прекурсора катализатора, но ниже температуры разложения прекурсора катализатора, и значительно ниже температуры синтеза одностенных углеродных нанотрубок (1050-1200°С). Ввод реакционной смеси и газов-носителей располагается в верхней части реактора, нагретого до температуры проведения синтеза (1050-1200°С), Температура смешения реакционной смеси с потоком газа-носителя и подачи в зону реакции определяется прекурсором катализатора: ферроцен - 173-470°С, никелоцен - 170-180°С, пентакарбонил железа - 105-130°С, тетракарбонил никеля - 20-42°С.

Данный подход обеспечивает мгновенный нагрев реакционной смеси до температуры синтеза, что предотвращает преждевременное разложение прекурсора катализатора, образование каталитически активных частиц и их агломерацию. Это способствует достижению заявленного технического результата, а именно обеспечивает оптимальные условия синтеза одностенных углеродных нанотрубок высокого качества и высокий выход ОУНТ. По мере перемещения реакционной смеси сверху вниз реактора происходит разложение прекурсора катализатора, образование каталитически активных частиц и рост на этих частицах одностенных углеродных нанотрубок и наночастиц. В процессе синтеза образуется углеродный волокнистый материал, состоящий из одностенных углеродных нанотрубок и наночастиц, который собирается в коллекторе в нижней части реактора. По окончании синтеза, охлаждение реактора ведут в токе инертного газа.

Синтез волокнистого материала, включающего одностенные углеродные нанотрубки, проводят в вертикальном реакторе. Реактор предварительно продувают инертным газом (аргоном, расход 100 мл/мин) в течение 15 минут. Затем температуру в реакционной зоне в токе инертного газа (аргона, расход 100 мл/мин) увеличивают до температуры проведения синтеза 1050-1200°С, скорость нагрева составляет 5-60°С/мин. При достижении температуры синтеза отключают подачу аргона, включают подачу водорода (газа-носителя) заданного расхода (50-800 мл/мин), включают подачу реакционной смеси и проводят синтез в течение 0,1-10 часов. Реакционную смесь, состоящую из прекурсора углерода, катализатора и активатора роста углеродных нанотрубок, подают в реактор со скоростью 0,015-15 мл/мин. В потоке газа-носителя реакционная смесь перемещается сверху вниз, проходит через реакционную зону, где происходит разложение катализатора и рост углеродных нанотрубок.

При использовании в качестве прекурсора углерода газообразных углеводородов, таких как метан, этан, пропан, ацетилен, этилен, подача данных прекурсоров осуществляют из газового баллона через редуктор, кран, систему осушки, регулятор расхода газа по линии подачи газов в узел смешения, где прекурсор углерода смешивается с водородом, а затем через линию питания реактора поступает в реактор.

Ниже представлены примеры получения волокнистого материала, состоящего из одностенных углеродных нанотрубок, предлагаемым способом.

Пример 1

Предварительно готовят реакционную смесь, состоящую из этанола, ферроцена и тиофена в отношении 100:1,5:0,15 мас.ч. Для этого в колбу, содержащую 10 г этилового спирта, добавляют 0,15 г ферроцена и 0,015 г тиофена. Полученную смесь перемешивают до полного растворения компонентов реакционной смеси и образования гомогенного раствора. Затем в токе аргона (100 мл/мин) поднимают температуру до температуры синтеза 1050°С. При достижении в реакционной зоне температуры синтеза отключают подачу инертного газа (аргона), включают подачу газа-носителя водорода (450 мл/мин) и в реакционную зону подают реакционную смесь, причем температура реакционной смеси на входе в реакционную зону составляет 350°С, скорость подачи реакционной смеси 0,08 мл/мин. Волокнистый углеродный материал, состоящий из одностенных углеродных нанотрубок, собирают в нижней части ректора. Синтез ведут в течение 30 мин, затем отключают подачу реакционной смеси, газа-носителя, и охлаждают реактор в токе инертного газа аргона (100 мл/мин).

В результате проведенного синтеза в соответствии с указанными примерами получают одностенные углеродные нанотрубки чистотой 98,4% и соотношением ID/IG=0,010. Выход ОУНТ составил 0,67 г/гFe.

Пример 2

Предварительно готовят реакционную смесь, состоящую из этанола, ферроцена и тиофена в отношении 100:5,0:0,05 мас.ч. Для этого в колбу, содержащую 10 г этилового спирта, добавляют 0,5 г ферроцена и 0,005 г тиофена. Полученную смесь перемешивают до полного растворения компонентов реакционной смеси и образования гомогенного раствора. Температура синтеза составляет 1050°С, температура реакционной смеси на входе в реакционную зону составляет 350°С, скорость подачи реакционной смеси 0,08 мл/мин. Синтез ведут в течение 60 мин.

В результате проведенного синтеза в соответствии с указанными примерами получают одностенные углеродные нанотрубки чистотой 98,0% и соотношением ID/IG=0,015. Выход ОУНТ составил 0,8 г/г Fe.

Примеры 3-11 аналогичны примеру 1, но с другими параметрами в пределах заявленных интервалов и представлены в таблице.

Как видно из таблицы, применение данной технологии позволяет существенно повысить выход и качество получаемого продукта.

Параметр Пример
3 4 5 6 7 8 9 10 11 12
Условия проведения синтеза
Состав реакционной смеси, м.ч.
Этанол - 100,0 - - - - 50,0 - 100,0 -
Гексан 100,0 - - - - - - - - 100,0
Пропанол - - 100,0 100,0 - - 50,0 - - -
Толуол - - - - 100,0 - - - - -
Бензол - - - - - 100,0 - 100,0 - -
Ферроцен - - - 1,25 3,5 - - - - -
Никелоцен - - - - 0,15 2,5 5,0 - -
Пентакарбонил железа 2,5 2,5 5,0 - - - - - - -
Тетракарбонил никеля - - - - - - - - 0,15 0,15
Тиофен 1,5 - - 0,04 0,175 - 4,0 4,0 2,5 0,04
2-метилтиофен - - 1,05 - - 0,05 - - -
3-метилтиофен - 0,07 - - - - - - -
Вода - 2,0 1,5 - - 2,5 5,0 5,0 2,5 5,0
Температура подачи реакционной смеси, °С 125 125 125 370 370 175 175 175 35 35
Температура синтеза, °С 1150 1200 1150 1200 1100 1150 1200 1200 1050 1050
Расход реакционной смеси, мл/мин 0,16 2,5 5,0 0,16 5,0 5,0 15,0 15,0 5,0 15,0
Расход дополнительного прекурсора углерода, мл/мин
Метан - - - - - - - - 100,0 -
Ацетилен - - - 100,0 - - - -
Расход потока газа-носителя, мл/мин:
Водород 450 450 450 80 200 100 400 400 80,0 200,0
Аргон - - - 80 200 100 - - 80,0 200,0
Продолжительность синтеза, мин 60 180 180 180 60 180 360 36 180 180
Характеристики получаемого волокнистого материала, состоящего из одностенных углеродных нанотрубок
Выход ОУНТ, г/гFe 0,68 0,88 0,89 0,70 0,60 1,0 1,0 0,95 0,95 0,90
Чистота ОУНТ, % 95,5 90,4 97,3 90,5 94,9 90,0 93,2 94,4 95,8 90,0
Соотношением ID/IG 0,018 0,075 0,011 0,010 0,050 0,082 0,055 0,077 0,010 0,090

1. Способ получения одностенных углеродных нанотрубок, включающий подачу реакционной смеси, состоящей из прекурсора катализатора и прекурсора углерода, в реакционную зону реактора в токе газа-носителя и синтез углеродных нанотрубок в присутствии активаторов роста, отличающийся тем, что температуру реакционной смеси на входе в реакционную зону поддерживают выше температуры испарения прекурсора катализатора, но ниже температуры разложения прекурсора катализатора, причем температура синтеза поддерживается в пределах 1050-1200°С, а в качестве активатора роста используют пары воды, и/или тиофен, или его гомологи.

2. Способ по п.1, отличающийся тем, что в качестве прекурсора углерода используют углеродсодержащие соединения, выбранные из группы: метан, этан, пропан, бензол, толуол, ксилолы, метанол, этанол, пропанол, изопропанол, этилен, пропилен, ацетилен или их смеси.

3. Способ по п.1, отличающийся тем, что в качестве прекурсора катализатора синтеза одностенных углеродных нанотрубок используют соединения переходных металлов, выбранные из группы: дициклопентадиенильные соединения переходных металлов общей формулы (h-C5H5)2M, карбонилы переходных металлов либо их смеси.



 

Похожие патенты:

Изобретение относится к области электроники и нанотехнологии, в частности к способу создания материала для высокоэффективных автоэмиссионных катодов на основе углеродных нанотруб, которые могут найти применение в дисплеях, панельных лампах, ионизаторах, рентгеновских источниках и других областях техники.

Изобретение относится к технике производства углеродных нанотрубок с использованием электромагнитного излучения. .

Изобретение относится к области органической химии и биотехнологии. .
Изобретение относится к разрушению углеродистых материалов, содержащихся в композициях, более конкретно изобретение применимо для удаления двуокиси углерода из газообразных и жидких композиций.

Изобретение относится к области наноматериалов. .

Изобретение относится к области гетерогенного катализа и может быть использовано для утилизации углеводородов и галогензамещенных углеводородов при изготовлении композиционных материалов, катализаторов, сорбентов и фильтров.

Изобретение относится к области технологии получения сверхчистых фуллеренов (особой степени чистоты). .

Изобретение относится к области технологии получения чистых фуллеренов. .
Изобретение относится к нанотехнологии. .

Изобретение относится к контрастному средству для магнитно-резонансной томографии (МРТ), которое содержит наночастицы оксида железа и носитель из микросферической пористой целлюлозы с размером частиц 10-125 мкм и объемом внутренних пор не менее 90%, полученной высаживанием нейтральной целлюлозы из раствора ее смеси с роданистым кальцием.

Изобретение относится к способу получения железоуглеродных наночастиц, характеризующемуся тем, что гранулы железа обрабатывают импульсными электрическими разрядами в реакторе в дисперсионной среде октана или декана.
Изобретение относится к области черной металлургии, конкретнее к способам обработки высокопрочных аустенитных сталей, и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении.

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению нановискерных структур оксида меди, и может быть использовано в технологии катализаторов.

Изобретение относится к области сельского хозяйства, в частности растениеводства, и нанотехнологиям. .

Изобретение относится к области электроники и нанотехнологии, в частности к способу создания материала для высокоэффективных автоэмиссионных катодов на основе углеродных нанотруб, которые могут найти применение в дисплеях, панельных лампах, ионизаторах, рентгеновских источниках и других областях техники.

Изобретение относится к области способов получения наноразмерных образцов диоксида титана и может применяться в качестве адсорбента для эффективной очистки водных систем от вредных и нерастворимых ионов и их соединений, в частности для извлечения ионов висмута.

Изобретение относится к области неорганической химии углерода, а именно: к нанодисперсным углеродным материалам и способу их очистки, и может быть использовано в различных высокотехнологичных областях промышленности и науки, где применяются порошки детонационных наноалмазов.

Изобретение относится к технике производства углеродных нанотрубок с использованием электромагнитного излучения. .

Изобретение относится к способу получения радиоактивного меченного технецием-99m наноколлоида. .

Изобретение относится к электрохимическому способу получения нанопорошков диборида титана, может быть использовано в получении неоксидной керамики для высокотемпературных агрегатов типа электролизера для производства алюминия.
Наверх