Раствор для химического осаждения композиционных никелевых покрытий



Раствор для химического осаждения композиционных никелевых покрытий
Раствор для химического осаждения композиционных никелевых покрытий
Раствор для химического осаждения композиционных никелевых покрытий

 


Владельцы патента RU 2465374:

Сафонов Валентин Владимирович (RU)
Шишурин Сергей Александрович (RU)
Сёмочкин Владимир Сергеевич (RU)

Изобретение относится к области нанесения металлических покрытий и может быть использовано при химическом никелировании стальных деталей. Раствор для химического осаждения композиционных никелевых покрытий содержит сернокислый никель, уксуснокислый натрий, гипофосфит натрия, инертные частицы, в качестве которых использованы нанодисперсные частицы оксида алюминия, имеющие размер 50-80 нм, при следующем содержании, г/л: сернокислый никель 20, уксуснокислый натрий 10, гипофосфит натрия 10, нанодисперсные частицы оксида алюминия 0,3. Изобретение позволяет увеличить количество включаемых в никелевое покрытие частиц, повысить равномерность их распределения в покрытии, а также повысить микротвердость и коррозионную стойкость полученного никелевого покрытия. 2 ил., 1 табл.

 

Изобретение относится к области нанесения металлических покрытий и может быть использовано при химическом никелировании стальных деталей как с целью антикоррозионной защиты, так и для решения функциональных задач: увеличения микротвердости, износостойкости и жаростойкости, создания режущих слоев.

За прототип к заявленному изобретению принимаем патент РФ №2108416, МПК С25D 15/00, опубликован 10.04.1998 г., сущность которого заключается в том, что в раствор химического никелирования, содержащий никель сернокислый, натрий уксуснокислый, гипофосфит натрия и инертные частицы, дополнительно введен препарат хромоксан, при этом содержание всех указанных компонентов должно быть в следующих соотношениях (г/л):

сернокислый никель 20

уксуснокислый натрий 10

гипофосфит натрия 10

хромоксан 0,1-0,2

Этот раствор по составу наиболее близок к заявленному. При введении в него инертных частиц (алмаз марки АСВ (размер частиц 63-80 мкм) и тальк (размер частиц 5-10 мкм) при температуре 92°C, кислотности pH 4,6 и плотности загрузки 1 дм2/л формируются композиционные химические покрытия с включенными в них частицами.

Недостатком прототипа является недостаточное включение инертных частиц в покрытие и неравномерность их распределения по всему объему покрытия (особенно по сложному профилю детали), низкая микротвердость и коррозионная стойкость покрытия. На отдельных участках покрываемой поверхности наблюдается избыток частиц, иногда перекрывающих друг друга, а на других участках - полное их отсутствие в никелевом покрытии. Малое количество соосажденных с никелем частиц и их неравномерное распределение приводит к получению различных характеристик покрытий на разных участках, что отрицательно сказывается на эксплуатационных свойствах изделия. Технической задачей изобретения является устранение указанных недостатков путем введения инертных частиц другой природы, увеличения количества включаемых в осадок никеля частиц, повышения равномерности их распределения в покрытии и улучшения физико-механических свойств никелевого покрытия.

Техническая задача решается в растворе для химического осаждения композиционных никелевых покрытий, содержащем сернокислый никель, уксуснокислый натрий, гипофосфит натрия, инертные частицы при следующем содержании, г/л:

сернокислый никель 20

уксуснокислый натрий 10

гипофосфит натрия 10

отличающийся тем, что инертные частицы имеют размеры 50…80 нм и концентрация их в растворе составляет 0,3 г/л, причем в качестве инертных частиц используются нанодисперсный порошок (НДП) оксида алюминия.

Преимущества раствора перед прототипом: достаточное внедрение частиц в покрытии, равномерное распределение частиц в покрытии, высокая микротвердость полученного никелевого покрытия, высокая коррозионная стойкость.

На фигуре 1 представлена схема нанесения композиционных никелевых покрытий. На фигуре 2 представлена поверхность никелевого покрытия: а) без частиц; б) с частицами. В таблице представлены результаты испытаний на микротвердость.

Покрытия наносим в стеклянном сосуде 1 (см. фиг 1).

Приготовление раствора 2 заключается в следующем. Вначале нагреваем дистилированную воду до температуры 60°C. Далее в отдельной фарфоровой емкости смешиваем некоторую часть воды с инертными частицами и путем растирания в течение 30 мин доводим до пастообразного состояния. Полученная концентрированная суспензия выливается в основную емкость при постоянном перемешивании. Далее в полученной суспензии растворяем сернокислый никель и уксуснокислый натрий. Получившийся раствор-суспензию нагреваем до температуры 80°C и добавляем гипофосфит натрия. После тщательного перемешивания поднимаем температуру до рабочей - 92°C.

В раствор помещаем стальные пластинки 3 (сталь 65Г, размер 100×15×2 мм), расположенные вертикально. Процесс химического никелирования осуществляем при режимах: температуре 92°C, кислотности pH 4,6, времени нанесения покрытия 1 ч. В качестве инертных частиц 4 используем нанодисперсный порошок (НДП) оксида алюминия (размер частиц 50…80 нм).

Концентрация НДП подобрана таким образом, чтобы обеспечить достижение максимального эффекта, оптимального количества включаемых в покрытие частиц, равномерности их распределения и улучшение физико-механических свойств никелевого покрытия. При снижении концентрации (менее 0,3 г/л) эффективность внедрения частиц снижается, при повышении частиц в растворе (более 0,3 г/л) ведет к избытку частиц в покрытии, тем самым снижаются функциональные свойства покрытия.

Визуально равномерность включения частиц в осадок химического никеля определяем подсчетом их количества в покрытии в поле зрения электронного микроскопа «MIRA II TESCAN» (Чехия). Для сравнения, фотографии структуры поверхностей никелевого покрытия без частиц а) и покрытия с внедренными частицами б) представлены на фиг.2 (×500).

Чтобы больше удостовериться в равномерности внедрения частиц и повышении микротвердости покрытия были проведены испытания на микротвердость согласно ГОСТ 9450-76 «Измерение микротвердости вдавливанием алмазных наконечников» на приборе ПМТ-3. Измерение микротвердости проводили на тех же стальных пластинках в трех зонах (1 - верхняя часть пластинки, 2 - средняя часть пластинки, 3 - нижняя часть пластинки) по шесть измерений в каждой зоне, вычисляя среднее значение микротвердости в каждой зоне.

Результаты опытов, представленные в таблице, показывают, что применение в качестве инертных частиц НДП оксида алюминия с размерами частиц 50…80 нм и концентрацией их в растворе 0,3 г/л позволяет увеличить равномерность внедрения частиц в покрытие и повысить микротвердость покрытия в 1,9 раза по сравнению с покрытием без НДП.

Коррозионные испытания будем проводить согласно ГОСТ 9.308-85 при повышенной относительной влажности и температуре с периодической конденсацией влаги и введением агрессивной составляющей - хлористого натрия. Образцы необходимо взвесить на аналитических весах типа ВЛА-200М и поместить в камеру коррозионных испытаний.

Для проведения испытаний подготавливаем двенадцать образцов. На шесть из них наносим химическое покрытие никеля, на другие шесть - композиционное никелевое покрытие.

Для получения солевого тумана используем раствор хлористого натрия концентрацией 50 г/дм3. Образцы поместим в камеру коррозионных испытаний, которую нагреем до температуры 35°C. Продолжительность испытаний 12 ч. Распыление солевого тумана производим в начале каждого часа испытаний.

Коррозионную стойкость покрытий будем оценивать по потере массы образцов после удаления продуктов коррозии.

Удаление продуктов коррозии осуществим помещением деталей после испытаний в ванну с раствором (8%-ный раствор NaOH) и выдержим их в течение 20 мин при температуре 20°C.

В результате испытаний коррозионная стойкость композиционного никелевого покрытия в 2,2 раза выше, чем у чистого покрытия никеля.

Раствор для химического осаждения композиционных никелевых покрытий, содержащий сернокислый никель, уксуснокислый натрий и гипофосфит натрия при содержании, г/л: сернокислый никель 20, уксуснокислый натрий 10 и гипофосфит натрия 10, и инертные частицы, отличающийся тем, что инертные частицы имеют размеры 50-80 нм и концентрация их в растворе составляет 0,3 г/л, причем в качестве инертных частиц используются нанодисперсные частицы оксида алюминия.



 

Похожие патенты:
Изобретение относится к получению покрытий для защиты поверхностей от коррозии. .
Изобретение относится к нанесению покрытий на металлические изделия, в частности к получению композиционного покрытия на металлических изделиях методом химического осаждения.
Изобретение относится к машиностроению и может быть использовано для получения химических покрытий на деталях из материалов, которые работают в условиях повышенного износа, высоких давлений, температур, в присутствии агрессивных сред.

Изобретение относится к машиностроению и может быть использовано для химического никелирования широкого класса матриц из стали, чугуна и алюминия. .
Изобретение относится к области нанесения металлических покрытий и может быть использовано при химическом никелировании стальных деталей, которые могут быть использованы в химической промышленности, машиностроении.
Изобретение относится к химическому осаждению аморфных магнитных пленок Co-Р, например, на полированное стекло и может быть использовано в вычислительной технике в головках записи и считывания информации, в датчиках магнитных полей, в управляемых сверхвысокочастотных (СВЧ) устройствах: фильтрах, амплитудных и фазовых модуляторах и т.д.
Изобретение относится к химико-термической обработке порошковых сталей и может быть использовано в машиностроении для поверхностного упрочнения изделий из порошковых сталей.

Изобретение относится к области химического никелирования металлов и сплавов, в частности алюминия и его сплавов, меди и ее сплавов, стали, и может быть применено во многих отраслях приборостроения и машиностроения.

Изобретение относится к области нанесения металлических покрытий и может быть использовано в электрической, химической промышленности и машиностроении. .

Изобретение относится к эксплуатации теплоэнергетических установок и может быть использовано в транспортных и стационарных дизелях, водогрейных котлах и системах отопления.

Изобретение относится к нанотехнологии и может быть использовано для нанесения ультратонких люминесцентных покрытий и для получения маркеров. .

Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов.

Изобретение относится к контрастному средству для магнитно-резонансной томографии (МРТ), которое содержит наночастицы оксида железа и носитель из микросферической пористой целлюлозы с размером частиц 10-125 мкм и объемом внутренних пор не менее 90%, полученной высаживанием нейтральной целлюлозы из раствора ее смеси с роданистым кальцием.
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к химической промышленности, к катализаторам синтеза винилацетата. .

Изобретение относится к производству автомобильных катализаторов, в частности к способу их регенерации. .

Изобретение относится к измерительной технике, в частности к датчикам давления с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС), предназначенным для использования при воздействии нестационарных температур и повышенных виброускорений.

Изобретение относится к области электроники и нанотехнологии, в частности к способу создания материала для высокоэффективных автоэмиссионных катодов на основе углеродных нанотруб, которые могут найти применение в дисплеях, панельных лампах, ионизаторах, рентгеновских источниках и других областях техники.

Изобретение относится к средствам оптической импульсной техники и может быть использовано в оптических устройствах обработки информации и оптических вычислительных машинах в качестве источника тактовых импульсов
Наверх