Микроэлектромеханический датчик давления

Изобретение относится к емкостным датчикам давления газов и жидкостей, в частности микроэлектромеханическим, которые используются для контроля давления в устройствах промышленной автоматики, в гидросистемах. Техническим результатом является повышение разрешающей способности датчика давления. Микроэлектромеханический датчик давления, выполнен в виде жестко соединенных стеклянного основания и кремниевого чувствительного элемента. Стеклянное основание металлизировано и является неподвижным электродом. Кремниевый чувствительный элемент представляет собой вытравленную в кремниевой пластине конфигурацию - основание, в котором вытравлены полость (рабочий объем) тонкой мембраны, жесткость которой определена диапазоном измеряемых давлений, и канал для подвода проводника. Жесткий элемент в центре мембраны является обкладкой конденсатора. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к емкостным датчикам давления газов и жидкостей, в частности микроэлектромеханическим, которые используются для контроля давления в устройствах промышленной автоматики, в гидросистемах и пр.

Известен датчик давления [1]. В нем используется толстая опорная пластина (фиксированный электрод), на которой закреплена диафрагма с емкостным электродом (подвижный электрод), на диафрагме по ее ободу закреплена электродная пластина. Под действием давления диафрагма отклоняется, создавая выходной сигнал.

Наиболее близким к изобретению по технической сущности является микроэлектронный датчик давления [2]. Предлагаемое изобретение заключается в том, что основание датчика выполняется из двух частей: верхняя часть основания полностью идентична с кремниевым чувствительным элементом по конфигурации, размерам и кристаллографической ориентации, а нижняя часть основания выполняется из кремния, стекла или керамики таким образом, что ее боковые внешние размеры вписываются в размеры углубления под мембраной. Соответствующие конструктивные элементы датчика жестко соединены с помощью стекла.

Недостатком этого решения является недостаточно высокая разрешающая способность.

Избежать этого недостатка можно тем, что в датчике давления, выполненном в виде жестко соединенных стеклянного основания и кремниевого чувствительного элемента, стеклянное основание металлизировано и является неподвижным электродом, а кремниевый чувствительный элемент представляет собой вытравленную в кремниевой пластине конфигурацию - основание, в котором вытравлены полость (рабочий объем) тонкой мембраны, жесткость которой определена диапазоном измеряемых давлений, и канал для подвода проводника. Жесткий элемент в центре мембраны является обкладкой конденсатора.

Наличие отличительных признаков указывает на соответствие критерию "новизна".

Указанные отличительные признаки неизвестны в патентной литературе, и поэтому предложенное техническое решение соответствует критерию "изобретательский уровень".

На фиг.1 представлены: а- конструкция датчика давления,

b - принцип работы чувствительного элемента.

На фиг.2 представлена конструктивная схема подвижного элемента микроэлектромеханического датчика давления.

Как показано на фиг.1, датчик давления содержит: 1 - контактные площадки, 2 - мембрана, 3- основание (статор), 4 - нижняя обкладка конденсатора.

Как показано на фиг.2, 2 - мембрана (2.1 - тонкая мембрана, 2.2 - элемент жесткости), 3 - основание (статор), 5 - внутренняя полость, 6 - электрод емкостного датчика перемещения, 7 - канавка для подвода проводника нижней обкладки.

Чувствительный элемент (мембрана) представляет вытравленную в кремниевой пластине конфигурацию - основание, в котором вытравлена полость (рабочий объем) тонкой мембраны, жесткостью которой определяется диапазон измеряемых давлений. Жесткий элемент в центре мембраны является обкладкой конденсатора и характеризует изменение емкости, зависящее от перемещения, а не от формы мембраны. Канавка служит для изоляции обкладок конденсатора и герметизируется.

Принцип работы датчика давления заключается в том, что под действием разности давлений с различных сторон мембрана прогибается, что приводит к изменению собственной емкости конденсатора.

Емкостная система съема сигнала формируется на основе подвижной кремниевой части чувствительного элемента и металлизированной стеклянной основы.

Данный тип конструкции микроэлектромеханических датчиков давления обладает рядом преимуществ. В предложенном типе конструкций используется бесконтактный способ передачи энергии, что приводит к отсутствию трения между деталями. Этот фактор влияет на увеличение механической надежности изделия. Отсутствие накопления объемного заряда приводит также к увеличению электрической надежности. Предложенный тип конструкции в силу отсутствия сильных механических деформаций не предъявляет высоких требований к усталостным свойствам конструкционного материала. Емкостная система съема в совокупности с современными электронными схемами обработки сигнала позволяет достигнуть высокой точности определения положения подвижной части микроэлектромеханических датчиков давления.

Предлагаемое изобретение направлено на решение задачи повышения разрешающей способности.

Данное решение может быть осуществлено на предприятиях РФ на оборудовании, изготавливаемом в РФ, и соответствует критерию "промышленная применимость".

Источники информации

1. Патент РФ на изобретение №2120117, кл. G01L 9/12, опубликовано 10.10.1998.

2. Патент РФ на изобретение №2169912, кл. G01L9/04 опубликовано 27.06.2001.

1. Микроэлектромеханический датчик давления, выполненный в виде жестко соединенных стеклянного основания и кремниевого чувствительного элемента, отличающийся тем, что стеклянное основание металлизировано и является неподвижным электродом, а кремниевый чувствительный элемент представляет собой вытравленную в кремниевой пластине конфигурацию - основание, в котором вытравлены полость (рабочий объем) тонкой мембраны и канал для подвода проводника, а жесткий элемент в центре мембраны является обкладкой конденсатора.

2. Датчик по п.1, отличающийся тем, что жесткость тонкой мембраны определена диапазоном измеряемых давлений.



 

Похожие патенты:

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике, в частности к датчикам давления с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС), предназначенным для использования при воздействии нестационарных температур и повышенных виброускорений.

Изобретение относится к измерительной технике. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения как постоянного давления, так и динамического давления. .

Изобретение относится к измерительной технике, предназначенной для измерения избыточного давления высокотемпературных сред. .

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения механических напряжений. .

Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления. .

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для измерения давления в условиях воздействия нестационарных температур и повышенных виброускорений.

Изобретение относится к устройству для измерения давления со смонтированным на цоколе полупроводниковым датчиком давления. .

Изобретение относится к измерительной технике и может быть использовано для калибровки датчиков пульсаций давления

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике, предназначено для измерения механических величин и может быть использовано в средствах автоматизации контроля технологических процессов

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения физических величин (температуры, давления, деформации)

Изобретение относится к измерительной технике и может быть использовано для измерения звукового давления

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения в заданном участке температуры, теплового потока и давления

Изобретение относится к измерительным приборам и может быть использовано для измерения малых величин абсолютных давлений
Наверх