Способ формирования режима работы термоэмиссионного электрогенерирующего канала

Изобретение относится к ядерной энергетике, в частности к космической, с использованием ядерных реакторов с термоэлектрическим и термоэмиссионным преобразованием. Технический результат - возможность проведения испытаний многоэлементных термоэмиссионных электрогенерирующих каналов вне реактора при оценке качества их изготовления и при проведении экспериментов по исследованию возможных режимов их работы, включая термоэмиссию в космических ядерных энергоустановках. Способ предусматривает формирование расчетного режима работы термоэмиссионного электрогенерирующего канала (ЭГК) с целью оценки качества его изготовления и установления исходного режима для проведения планируемых экспериментов и использует сравнение наклона регистрируемой стационарной ВАХ и совпадение ее с расчетной ВАХ. 2 ил.

 

Изобретение относится к ядерной энергетике, в частности к космической, с использованием ядерных реакторов с термоэлектрическим и термоэмиссионным преобразованием, например, при проведении испытаний многоэлементных термоэмиссионных электрогенерирующих каналов вне реактора при оценке качества их изготовления и при проведении экспериментов по исследованию возможных режимов их работы, включая термоэмиссию в космических ядерных энергоустановках.

Изобретение предназначено для формирования расчетного режима работы термоэмиссионного электрогенерирующего канала (ЭГК) при необходимости проведения испытаний многоэлементных термоэмиссионных электрогенерирующих каналов вне реактора при оценке качества их изготовления и при проведении экспериментов по исследованию возможных режимов их работы.

При испытаниях экспериментального термоэмиссионного преобразователя (ТЭП) на лабораторном стенде одной из возможностей получения информации о его внутренних (не измеряемых непосредственно) параметрах является использование при анализе результатов эксперимента математических моделей процессов, протекающих в ТЭП [7].

Конечной целью вычислительного эксперимента является получение максимально возможной информации о состоянии электрогенерирующих сборок (ЭГС) в процессе испытаний.

Подчеркивается, что для проведения вычислительного эксперимента на всех этапах разработки и испытаний ЭГС требуется совокупность математических моделей, наиболее полно отражающих плазменные, электрические, тепловые и т.п. процессы в различных режимах работы ЭГС [8].

Математическое моделирование используется при изучении влияния различных факторов и внешних условий на характеристики ЭГК, а также при анализе и интерпретации результатов эксперимента, включая аномальные эффекты и различного рода нарушения режимов работы [9].

В данном изобретении предлагается проводить сравнение расчетной статической ВАХ, полученной при моделировании требуемого режима работы ЭГК, с ВАХ, полученной при оценке режима работы контрольного ЭГК, готовом к установке в активную зону реактора.

Расчетные оценки стационарных вольтамперных характеристик (ВАХ) проводятся с учетом работ [2, 3, 4 и т.д.] и принятых значений констант для ЭГК данной конструкции.

В качестве регулируемых параметров настройки используется давление паров цезия в межэлектродном зазоре (МЭЗ), которое задается из отдельного резервуара с источником паров цезия и значение температуры эмиттера [2, 3, 4, 10].

Давление насыщенных паров цезия в тракте системы оценивается по уравнению Ленгмюра [4]:

1q P=13.1781-1.35 1q Т-4041/Т,

где Р - давление паров цезия в трассе, Па;

Т - температура резервуара с цезием, К.

При отработке конструкции ЭГК и оценке получаемых результатов используется зависимость удельной электрической мощности от температуры резервуара с жидким цезием [4] (температура электродов остается постоянной).

Однако указанное решение не позволяет достоверно оценить качество конструкции, не обеспечивает возможность проведения большого объема испытаний полномасштабных ЭГК при рабочих температурах на стенде с электрическим нагревом и аппроксимировать с достаточной точностью результаты испытаний на реальные условия, при обеспечении удобства использования.

При оценке качества готовой конструкции ЭГК предлагается использовать стационарную ВАХ, позволяющую оценить оптимальность давления цезия и температуру эмиттера.

Визуализация - это мощный инструмент выявления закономерностей, заложенных в изображаемые образы. В стационарную ВАХ заложена информация о двух параметрах - давлении паров цезия непосредственно в межэлектродном зазоре (МЭЗ) и величине температуры эмиттера.

Также в качестве близкого аналога можно рассматривать конструкцию одноэлементного ЭГК [6] (представлены результаты исследований и разработок космических ядерных энергетических установок с прямым преобразованием тепловой энергии, выполненных Курчатовским институтом в содружестве с многими российскими организациям), в котором вместо топливного сердечника возможно установить электрический нагреватель. Одним из основных преимуществ такой конструкции является возможность проведения большого объема испытаний полномаштабных ЭГК при рабочих температурах на стенде с электрическим нагревом [11]. Для известного решения [2, 3] измерение в МЭЗ давления паров цезия, температуры эмиттера и коллектора многоэлементного ЭГК невозможно по конструктивным причинам (МЭЗ равен 0.4 мм, а ЭГК - это неразборное изделие, готовое к работе в активной зоне реактора). Наиболее чувствительным контролируемым параметром, реагирующим на изменения условий в МЭЗ, является величина изменения тока на клеммах ЭГК.

Также известно техническое решение - прототип: патент РФ №1839998, МПК H01J 45/00, от 03.03.1989 «СПОСОБ ОПРЕДЕЛЕНИЯ ЧИСЛА РАБОТОСПОСОБНЫХ ЭЛЕМЕНТОВ В ТЕРМОЭМИССИОННОМ ЭЛЕКТРОГЕНЕРИРУЮЩЕМ КАНАЛЕ», включающее расчет вольт-амперной характеристики - ВАХ для оптимальных значений параметров системы, регулирование реальных параметров работы системы, включая подачу паров цезия в межэлектродный зазор ЭГК, измерение реальной ВАХ, сравнение углов наклона измеренной ВАХ с углами наклона расчетной ВАХ.

Однако в решении неоптимальны либо недостаточны: точность измерений, в частности измеряемого давления паров цезия в цезиевой системе, в МЭЗ, оценка качества конструкции, обеспечение возможности проведения большого объема испытаний полномасштабных ЭГК при рабочих температурах на стенде с электрическим нагревом и возможность аппроксимировать с достаточной точностью результаты испытаний на реальные условия, при обеспечении удобства использования.

Техническая задача, решаемая предложенным изобретением, состоит в повышении точности измерений, в частности измеряемого давления паров цезия в цезиевой системе, в МЭЗ, в достоверной оценке качества конструкции, обеспечении возможности проведения большого объема испытаний полномасштабных ЭГК при рабочих температурах на стенде с электрическим нагревом и возможности аппроксимировать с достаточной точностью результаты испытаний на реальные условия, при обеспечении удобства использования.

Указанная техническая задача обеспечена использованием предложенной совокупности существенных признаков.

Способ формирования режима работы термоэмиссионного электрогенерирующего канала, включающий расчет вольт-амперной характеристики - ВАХ для оптимальных значений параметров системы, регулирование реальных параметров работы системы, включая подачу паров цезия в межэлектродный зазор ЭГК, измерение реальной ВАХ, сравнение углов наклона измеренной ВАХ с углами наклона расчетной ВАХ, причем осуществляют программное формирование образов расчетной ВАХ и реальной ВАХ, регулирование реальных параметров работы системы осуществляют, изменяя режим работы системы подачи паров цезия в межэлектродный зазор ЭГК и режим нагрева эмиттера одновременно, до совпадения предварительно программно-сформированных образов ВАХ.

Предложенное решение поясняют графические материалы.

На фиг.1 показан график зависимости наклона стационарной ВАХ от давления цезия:

На фиг.2 показано в координатах следующее.

1. Изменение тока и напряжения на клеммах ЭГК при сопротивлении внешней цепи 0.3 Ом.

2. Регистрируемое изменение тока и напряжения на клеммах ЭГК при давлении цезия в МЭЗ в 1.0 мм рт.ст. и сопротивлении внешней цепи 0.1…0.3 Ом.

3. Изменение тока и напряжения на клеммах ЭГК при сопротивлении внешней цепи 0.2 Ом.

4. Расчетное изменение тока и напряжения на клеммах ЭГК при давлении цезия в МЭЗ 2.0 мм рт.ст. и сопротивлении внешней цепи 0.1…0.3 Ом.

5. Изменение тока и напряжения на клеммах ЭГК при сопротивлении внешней цепи 0.1 Ом.

В предложенном решении за критерий качества исследуемого ЭГК принимаем критерий подобия расчетного и регистрируемого процесса, т.е. принимается совпадение расчетной статической ВАХ и регистрируемой ВАХ в рабочей области.

Давление цезия в межэлектродном зазоре (МЭЗ, равный 0.4 мм) ЭГК, которое определяет наклон ВАХ в рабочей части [2, 3]. Изменение проводимости в межэлектродном зазоре:

Для иллюстрации на фигуре 1 приведена экспериментальная зависимость

где ΔJ - изменение величины тока, регистрируемого на клеммах ЭГК при изменении сопротивления в цепи нагрузки, измеряется в амперах,

ΔV - изменение величины напряжения, регистрируемого на клеммах ЭГК при изменении сопротивления в цепи нагрузки, измеряется в вольтах,

- установившееся значение давления цезия в МЭЗ,

- оптимальное значение давления цезия в МЭЗ, соответствующее максимально возможному значению регистрируемой электрической мощности на клеммах ЭГК при рассматриваемом режиме работы,

ΔR - изменение внутреннего сопротивления МЭЗ.

- При оптимальном значении давления паров цезия в МЭЗ температура эмиттера определяет соотношение значений параметров J и V, регистрируемых на клеммах ЭГК [10].

Перед проведением экспериментальных исследований с ЭГК выпускается программа испытаний, содержащая расчетные прогнозные зависимости для требуемых режимов работы ЭГК:

- Стационарные ВАХ для всех требуемых режимов работы с указанием оптимального давления паров цезия (№4 на фиг.2).

- Зависимость наклона стационарной ВАХ от давления цезия - - изменение проводимости в межэлектродном зазоре (фиг.1).

При выводе ЭГК на требуемый режим работы проводится сравнительный анализ:

- Сравнивается расчетная ВАХ (№4) со стационарной ВАХ (№2), полученной на данном режиме работы. Вычисляется величина и оценивается несоответствие установленного в МЭЗ давления цезия принятому в расчетах за оптимальное. Давление цезия изменяется до выравнивания наклона ВАХ, внося изменения в положение регулятора давления паров цезия.

- Сравнивается совпадение ВАХ. Если они не совпадают, то, следовательно, температура эмиттера исследуемого ЭГК не соответствует расчетной. Требуется изменить нагрев эмиттера до совпадения ВАХ, выдавая соответствующие команды на управления в систему нагрева эмиттера.

При совпадении ВАХ (№2 и №4 на фиг.2) для испытываемого ЭГК можно считать, что условия работы МЭЗ (температура эмиттера и коллектора, состояние поверхностей и давление цезия) соответствует параметрам, принятым при расчете характеристик ЭГК. Полученный результат позволяет следующее.

Считать испытываемую конструкцию ЭГК качественной и готовой к монтажу в активной зоне реактора.

Перейти к дальнейшим экспериментам по использованию методик оценки величин неизмеряемых параметров МЭЗ в ЭГК [5].

По окончании запланированных исследований ЭГК выясняются причины зарегистрированных расхождений параметров.

Таким образом, данное решение позволит проводить испытания многоэлементных термоэмиссионных электрогенерирующих каналов вне реактора при оценке качества их изготовления и при проведении экспериментов по исследованию возможных режимов их работы, включая термоэмиссию в космических ядерных энергоустановках.

Литература

1. Пономарев-Степной Н.Н., Кухаркин Н.Е., Усов B.C., Мадеев В.Т., Дроздов А.А. и др. Уникальные разработки и экспериментальная база Курчатовского института. М.: ИздАт, 2008.

2. Jean-Louis Desplat. Evaluation of Oxygen-Dispensing Collectors for Thermionics. General Atomics, P.O. Box 85608, San Diego, CA 92121-1194. С.1452-1457.

3. Гуськов Ю.К., Лебедев М.А., Стаханов И.П. Низковольтная дуга в парах цезия. УДК 537.523.5. Журнал технической физики. Том XXXIV, вып.8, 1964.

4. Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. М.: Энергоатомиздат, 1993.

5. Кайбышев В.З. Термоэмиссия в космических ядерных энергоустановках. М.: Энергоатомиздат, 2008.

6. Кухаркин Н.Е., Пономарев-Степной Н.Н., Усов В.А. Космическая ядерная энергетика (ядерные реакторы с термоэлектрическим и термоэмиссионным преобразованием - «Ромашка» и «Енисей») М.: ИздАТ, 2008. С.78.

7. Болонкин B.C., Визгалов А.В., Ружников В.А., Сибир Е.Е., Сидельников В.Н. Идентификация внутренних параметров экспериментального ТЭП с шестигранными вольфрамовыми электродами. Физико-энергетический институт. Отраслевая юбилейная конференция «Ядерная энергетика в космосе». Обнинск, 1990. С.93.

8. Ю.В.Бабушкин, В.П.Зимин. Кибернетический центр при Томском политехническом институте. Томск. В.В.Мартьянов, В.В.Синявский. НПО «Энергия». Калининград московской области. Применение вычислительного эксперимента для анализа работы термоэмиссионных сборок. Физико-энергетический институт. Отраслевая юбилейная конференция «Ядерная энергетика в космосе». Обнинск, 1990. С.323.

9. В.В.Синявский. Особенности определения не измеряемых характеристик при петлевых испытаниях термоэмиссионных электрогенерирующих каналов. НПО «Энергия» Калининград московской области. Физико-энергетический институт. Отраслевая юбилейная конференция «Ядерная энергетика в космосе». Обнинск, 1990. С.325.

10. Ю.А.Нечаев. Космические ядерные энергоустановки «Ромашка» и «Енисей» (измерение реактивности, идентификация и диагностика, количественная оценка надежности). М.: ИздАТ, 2011.

11. В.И.Выбыванец, А.С.Гонтарь, С.А.Еремин, О.Л.Ижванов, Р.Я.Кучеров, В.А.Модин, Ю.В.Николаев, В.П.Чебоненко, Ю.Г.Дегальцев, А.А.Дроздов. Н.Н.Пономарев-Степной, А.Г.Каландаришвили, Н.Е.Менабде и др. Отраслевая юбилейная конференция «Ядерная энергетика в космосе». Обнинск, 1990. С.382.

Способ формирования режима работы термоэмиссионного электрогенерирующего канала, включающий расчет вольт-амперной характеристики - ВАХ для оптимальных значений параметров системы, регулирование реальных параметров работы системы, включая подачу паров цезия в межэлектродный зазор ЭГК, измерение реальной ВАХ, сравнение углов наклона измеренной ВАХ с углами наклона расчетной ВАХ, отличающийся тем, что осуществляют программное формирование образов расчетной ВАХ и реальной ВАХ, регулирование реальных параметров работы системы осуществляют, изменяя режим работы системы подачи паров цезия в межэлектродный зазор ЭГК и режим нагрева эмиттера одновременно, до совпадения предварительно программно-сформированных образов ВАХ.



 

Похожие патенты:

Изобретение относится к области энергетики, точнее к системам, преобразующим тепловую энергию непосредственно в электрическую энергию, и может быть использовано для повышения эффективности работы одного из видов этого типа устройств, а именно, термоэлектрических преобразователей энергии (ТЭП) со щелочными металлами (далее - Alkali metal thermal to Electric Conversion (AMTEC).

Изобретение относится к области энергетики, точнее к системам, преобразующим тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) непосредственно в электрическую энергию как в наземных, так и в космических условиях, и может быть использовано для повышения эффективности работы одного из видов этого типа устройств, а именно, термоэлектрических преобразователей энергии (ТЭП) со щелочными металлами (далее - Alkali metal thermal to Electric Conversion (AMTEC).

Изобретение относится к термоэмиссионным преобразователям тепловой энергии в электрическую, они широко применяются в ядерных энергетических установках. .

Изобретение относится к технологическим приемам решения задачи обеспечения электрической энергией потребностей собственных нужд (средства телемеханики, контрольно-измерительные приборы, освещение, охранно-пожарная сигнализация и т.д.) автономно функционирующих газоредуцирующих объектов магистральных газопроводов и газовых сетей низкого давления.

Изобретение относится к электротехнике и может быть использовано для производства электрической энергии для малой энергетики и локальных электросетей с использованием как высокопотенциального, так и низкопотенциального тепла, в частности солнечного.

Изобретение относится к области преобразования тепловой энергии в электрическую. .

Изобретение относится к области производства, преобразования и распределения электрической энергии и может быть использовано в устройствах для прямого преобразования тепловой энергии в электрическую.

Изобретение относится к устройствам прямого преобразования тепловой энергии в электрическую термоэмиссионым способом. .

Изобретение относится к области термоэмиссионного преобразования тепловой энергии ядерного реактора в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК)

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую

Изобретение относится к области энергетики и может быть использовано для прямого преобразования тепловой энергии в электрическую в различных автономных устройствах, где требуется невысокая электрическая мощность с длительным сроком службы

Изобретение относится к радиационной защите в составе ядерной энергетической установки для космического аппарата. Защита в местах прохода трубопроводов снабжена вставками из теплозащитного материала, например, на основе кварцевых волокон, закрепленными на внешней поверхности защиты и отделяющими трубопроводы от герметизирующей оболочки контейнера с гидридом лития. Кроме этого, переднее и заднее днища защиты снабжены разделенными в окружном направлении на полости коллекторами, которые соединены между собой трубками, содержащими охлаждающий теплоноситель и закрепленными на размещенной в гидриде лития между коллекторами перфорированной обечайки защиты, переднее днище которой дополнительно снабжено эквидистантно расположенной сферической оболочкой с радиальными выштамповками, образующими совместно с передним днищем изолированные полости, соединяющиеся в центре и имеющие на периферии выход в полости коллектора на переднем днище, а полости заднего коллектора снабжены патрубками подвода и отвода теплоносителя. При этом узлы крепления защиты к агрегатам ядерной энергетической установки размещены на перегородках полостей коллекторов, выполненных на переднем и заднем днищах защиты. Технический результат: обеспечение приемлемого температурного режима гидрида лития, исключающего выход из него водорода и его диффузию через оболочку защиты в космическое пространство. 2 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической и авиационной технике. Крыло гиперзвукового летательного аппарата (ЛА) содержит внешнюю оболочку, на внутренней поверхности которой размещен эмиссионный слой-катод, который через бортовой потребитель электроэнергии, токоввод катода и токовывод анода соединен с электропроводящим элементом-анодом, в герметизированные полости, образованные внешней оболочкой нагреваемой части крыла ЛА с эмиссионным слоем и анодом, а также анодом с эмиссионным слоем и вспомогательным анодом введены химические элементы - цезий, барий в парообразной фазе. На внутренней поверхности анода расположен термоэмиссионный слой-вспомогательный катод, а эквидистантно эмиссионному слою основного анода размещен вспомогательный анод, который через дополнительный токовывод, бортовой потребитель электроэнергии и токоввод катода электрически соединен с катодом, образованным внешней оболочкой крыла и нанесенным на ее внутреннюю поверхность эмиссионным слоем. Изобретение направлено на снижение температурно-напряженного состояния крыла. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике и может быть использовано для генерирования электроэнергии. Технический результат состоит в повышении выходной электроэнергии. Дисперсные структуры, использующие передачу заряда посредством газа и предназначенные для использования в электрических генераторах, содержат множество частиц, содержащих пустоты между первой и второй противоположными поверхностями упомянутых частиц. По меньшей мере, часть упомянутых противоположных поверхностей модифицируют таким образом, что способность передавать заряд упомянутых первых противоположных поверхностей отличается от способности передавать заряд упомянутых вторых противоположных поверхностей. 5 н. и 18 з.п. ф-лы, 12 ил., 11 табл.

Изобретение относится к электроэнергетике и может быть использовано в источниках тепловой и электрической энергии. В заявленном способе предусмотрено формирование высоковольтного электрического разряда между установленными последовательно анодным (3) электродом и катодным (4) электродом, выполненным из гидридообразующего металла, формирование вихревого потока инертного газа вдоль оси между электродами и инжекция в этот поток горячего водяного пара. Высоковольтный электрический разряд между анодным и катодным электродами формируют путем подачи на них комбинированного напряжения. Между электродами устанавливают зонды-электроды (6) для снятия электрической энергии. Заявленное устройство содержит кварцевую трубу (1), электродный анод и катод, выполненный из гидридообразующего металла, формирователь вихревого потока инертного газа (2), а также, по крайней мере, одну пару зондов-электродов, выполненных с возможностью снятия электрической энергии. Электродный анод выполнен в виде инжектора водяного пара, электродный катод выполнен в виде сопла (8) с отверстием для выпуска горячего пара. Генератор электрической энергии (5) выполнен с возможностью формирования комбинированного напряжения, включающего постоянную и высокочастотную составляющие. Техническим результатом является повышение интенсивности процесса одновременной генерации тепловой и электрической энергии. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод статора содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат. Обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами, для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, во внутренней части статора расположен ротор. 4 ил.

Термоэмиссионный способ тепловой защиты частей летательных аппаратов (ЛА) включает отвод теплового потока от нагреваемой части ЛА к менее нагретой с помощью термоэмиссионного модуля посредством размещения на внутренней поверхности нагреваемых частей ЛА электропроводящего материала или покрытия, обладающего при нагреве высокой эмиссией электронов, - эмиттера, установку с зазором от эмиттера электропроводящего элемента - коллектора, на котором осаждают эмитируемые электроны и через бортовой автономный потребитель электроэнергии транспортируют к эмиттеру, с последующей герметизацией, вакуумированием образованной между эмиттером и коллектором полости и введением в нее химических элементов или соединений, уменьшающих работу выхода электронов. Изобретение направлено на снижение температурно-напряженного состояния частей двигательной установки ЛА. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения внутренних параметров и выходных характеристик цилиндрического ТЭП с монокристаллическим полигранным эмиттером включает измерение вольт-амперных характеристик экспериментального ТЭП с изотермичными и эквипотенциальными электродами и математическое моделирование на основе полученных ВАХ процессов теплоэлектропроводности в ТЭП. Согласно изобретению определяют преимущественную ориентацию кристаллографических граней и площадь поверхности, занятую каждой из этих граней по окружности эмиттера. Измеряют ВАХ по меньшей мере двух экспериментальных плоских ТЭП с монокристаллическими моногранными эмиттерами, ориентация кристаллографических граней на поверхности каждого из которых соответствует одной из выявленных преимущественных ориентаций граней полигранного эмиттера. Получают зависимость плотности тока в межэлектродном зазоре цилиндрического ТЭП от азимутального направления из установленного соотношения. Полученную зависимость плотности тока от азимутального направления используют при математическом моделировании процессов в ТЭП. Технический результат - возможность получить азимутальные распределения температур и электрических потенциалов электродов, повышение точности определения выходных характеристик цилиндрических ТЭП с монокристаллическим эмиттером. 1 з.п. ф-лы, 2 ил.
Наверх