Средство для лечения гнойных ран


 


Владельцы патента RU 2465899:

Федеральное государственное учреждение "Московский научно-исследовательский онкологический институт им. П.А. Герцена Министерства здравоохранения и социального развития Российской Федерации" (ФГУ "МНИОИ им. П.А. Герцена Минздравсоцразвития России) (RU)
Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") (RU)

Изобретение относится к фармацевтической промышленности, в частности к средству для лечения гнойных ран методом фотодинамической терапии. Средство для лечения гнойных ран методом фотодинамической терапии в виде геля, включающее полихолинилфталоцианин цинка, гидроксиэтилцеллюлозу, диметилсульфоксид или бензалконий хлорид (алкилбензилдиметиламмоний хлорид), блок-сополимер этиленоксида и пропиленоксида или полиэтиленгликоль, пропиленгликоль, воду, взятые в определенном количестве. Средство для лечения гнойных ран методом фотодинамической терапии, представляющее собой пленку, полученную путем высушивания вышеописанного геля. Средство удобно в применении и обеспечивает заживление гнойных ран в минимально возможные сроки. 2 н. п. ф-лы, 4 табл., 11 пр.

 

Изобретение относится к фармацевтической химии, а именно к средствам для антимикробной фотодинамической терапии (АФДТ).

Лечение локальных бактериальных инфекций является одной из сложных и далеко не решенных проблем медицины. Как следствие, во многих случаях лечение локальных инфекций и гнойных ран требует длительного времени и бывает малоэффективным. Применение противовоспалительных и антибактериальных препаратов, в том числе антибиотиков, для лечения заболеваний микробной этиологии приводит к появлению устойчивых к химиотерапии микроорганизмов со скоростью, опережающей введение в практику новых эффективных препаратов. В связи с этим АФДТ приобретает существенное значение при лечении локальных инфекционных процессов. Преимущество метода АФДТ с использованием фталоцианиновых красителей заключается в отсутствии развития резистентности микроорганизмов к данному виду лечения. Комплексное воздействие фотосенсибилизатора и активирующего излучения, сопровождающееся образованием синглетного кислорода, приводит к избирательной окислительной деструкции патогенных микроорганизмов путем множественных процессов окисления различных субклеточных структур. Фотодинамическое повреждение, обусловленное цитотоксическим действием синглетного кислорода, приводит к гибели вирусов, грибов и бактерий, включая антибиотикорезистентные штаммы золотистого стафилококка, синегнойной палочки и др. Противомикробное действие АФДТ не убывает со временем при длительном лечении хронических локальных инфекционных процессов, при этом бактерицидный эффект носит локальный характер и не имеет системного губительного действия на сапрофитную флору организма.

Известны эффективные сенсибилизаторы АФДТ - фталоцианины с катионными заместителями, обладающие сродством к широкому ряду бактерий и применяемые в том числе и для лечения гнойных ран (патент РФ №2282647, С09В 47/32, 27.08.2006 г., прототип). Одним из указанных фотосенсибилизаторов является полихолинилфталоцианин цинка со степенью замещения 6-8 - водорастворимый краситель, имеющий максимум длинноволнового поглощения в воде в области 680 нм. Описано применение его растворов, наносимых на поврежденные участки с помощью пропитанных раствором марлевых салфеток. Такой метод во многих случаях затрудняет точную дозировку препарата. Внесенная доза зависит от влажности салфетки, от плотности прилегания ее ко всем обрабатываемым участкам и потери раствора при его растекании. При этом надо учитывать, что определенная часть препарата адсорбируется на салфетке и не поступает на пораженный участок.

Задача данного изобретения состоит в разработке средств для лечения локальных инфекций гнойных ран, удобных в применении, обеспечивающих проникновение фотосенсибилизатора в обрабатываемые ткани в рассчитанной дозе при экономичном расходе препарата.

Решение поставленной задачи достигается получением геля или пленки на его основе для лечения локальных инфекций гнойных ран методом АФДТ, включающих полихолинилфталоцианина цинка, разрешенные к применению в медицине водорастворимые полимеры и вспомогательные вещества в следующих соотношениях компонентов, мас.%:

полихолинилфталоцианин цинка 0,02-1,00

гидроксиэтилцеллюлоза 1,3-1,6

диметилсульфоксид или бензалконий хлорид

(алкилбензилдиметиламмоний хлорид) 0,2-3,0

блок-сополимер этиленоксида и пропиленоксида или полиэтиленгликоль 3,2-4,0

пропиленгликоль 4,0-7,7

вода - остальное.

Такие соотношения ингредиентов композиции обеспечивают наибольший лечебный эффект получаемых гелей и пленок.

Средство было получено путем внесения полихолинилфталоцианин цинка, синтезированного по методу, описанному в прототипе, и вспомогательных компонентов в заранее приготовленную растворением гидроксиэтилцеллюлозы в воде гелевую основу. В случае получения пленки гель, содержащий полихолинилфталоцианин цинка, наносился ровным слоем на плоскую поверхность и высушивался.

Эффективность поступления фотосенсибилизатора из гелей и пленок на обрабатываемые ткани определяли, измеряя контактным способом их экзогенную флуоресценцию. Полученные данные показали, что разработанные композиции достаточно быстро высвобождают полихолинилфталоцианин цинка, который поступает в раневую ткань. При этом в опытах на мышах было показано, что фотосенсибилизатор преимущественно локализуется в ране и окружающих тканях, в кровоток поступает в течение 2 часов после начала аппликации геля. В отдаленных тканях следовые количества полихолинилфталоцианина цинка определяются после 2, 4 и 6-часовой экспозиции геля. В печени с увеличением времени аппликации нормированная флуоресценция (Фн) полихолинилфталоцианина цинка увеличивается, а в почках - регистрируется в следовых количествах при всех сроках экспозиции. В селезенке Фн препарата регистрируется только после шестичасовой аппликации геля.

С использованием заявляемых средств было проведена АФДТ длительно не заживающих гнойных ран.

Методика терапии гнойных ран заключалась в том, что на раневую поверхность наносился гель на время от 30 мин до 3 ч. Затем проводилось облучение пораженных тканей полупроводниковым лазером с экспозицией от 2 до 10 мин. Применение лазерных источников света (с длиной волны 650-670 нм) для возбуждения фотодинамической реакции и инактивации гнойной флоры является наиболее эффективным. Это выражается в быстром очищении ран от продуктов распада и жизнедеятельности микроорганизмов, более раннем появлении здоровых грануляций и купировании воспалительных явлений в ране. Немаловажное значение имеет также косметический аспект - отсутствие грубых рубцовых деформаций при больших дефектах мягких тканей.

Процедура проводилась ежедневно или через день до полного очищения раны от гнойного отделяемого и раневого детрита, от 3 до 6 процедур на курс лечения в зависимости от тяжести и распространенности гнойного процесса.

Полное очищение гнойной раны наступало, как правило, через 5-7 суток при ежедневном применении АФДТ, в то время как в обычных условиях и применении стандартного антибактериального и местного лечения эти сроки составляют в среднем от 2 до 3 недель, а иногда и более.

Предлагаемое изобретение иллюстрируется нижеследующими примерами, но не ограничивается ими.

Пример 1

К 87,6 г воды (или 87,3 г в случае использования марки гидроксиэтилцеллюлозы марки 250 MR) при перемешивании добавляют 3,2 г блок-сополимера этиленоксида и пропиленоксида (эмуксол-268), смесь перемешивают при 60°C, затем охлаждают до комнатной температуры, в нее добавляют гидроксиэтилцеллюлозу 1,3 г (Natrosol 250 тип HHR) или 1,6 г (тип 250 MR) и перемешивают в течение 2 часов, добавляют 7,7 г пропиленгликоля, 0,1 г бензалконий хлорида и снова перемешивают. В полученную гелевую основу вносят 0,02 г полихолинилфталоцианина цинка со степенью замещения 7,5 и смесь перемешивают 15 минут. Составы полученных гелей приведены в табл.1.

Примеры 2 и 3

Гели получены по методу примера 1, но полихолинилфталоцианин цинка взят в количестве 0,2 и 1 г при соответствующем уменьшении количества воды. Составы полученных гелей приведены в табл.1.

Пример 4

К 87,7 г воды при интенсивном перемешивании добавляют 1,3 г гидроксиэтилцеллюлозы (Natrosol 250 тип MR) и смесь перемешивают в течение 30 мин при 50°C. Затем массу охлаждают до комнатной температуры, в образовавшийся гель при перемешивании последовательно вносят 4,0 г пропиленгликоля, 4,0 г полиэтиленгликоля 400, 3,0 г диметилсульфоксида и перемешивают еще 15 минут. Далее в состав вносят 0,02 г полихолинилфталоцианина цинка со степенью замещения 7,5 и вновь массу перемешивают. Состав полученного геля приведен в табл.1.

Примеры 5 и 6

Пленки получали по методу примера 4, но полихолинилфталоцианин цинка был взят в количествах 0,2 и 1 г при соответствующем уменьшении массы воды. Составы полученных гелей приведены в табл.1.

Таблица 1
Состав гелей (мас.%) по примерам 1-6
Пример chol-PcZn ГЭЦ (тип) ДМСО БХ ПЭПО ПЭГ ПГ Вода
1 0,02 1,3(HHR) - 0,2 3,2 - 7,7 87,6
0,02 1,6 (MR) - 0,2 3,2 - 7,7 87,3
2 0,2 1,3(HHR) - 0,2 3,2 - 7,7 87,4
3 1 1,3 (HHR) - 0,2 3,2 - 7,7 86,6
4 0,02 1,3 (MR) 3 - - 4 4 87,7
5 0,2 1,3 (MR) 3 - - 4 4 87,5
6 1 1,3 (MR) 3 - - 4 4 86,7
Примечания
1. chol-PcZn - полихолинилфталоцианин цинка, ГЭЦ - гидроксиэтилцеллюлоза, ДМСО - диметилсульфоксид, БХ - бензалконий хлорид, ПЭПО - блок-сополимер этиленоксида и пропиленоксида (эмуксол-268), ПЭГ - полиэтиленгликоль, ПГ - пропиленгликояь.
2. Использован ГЭЦ марки Natrosol 250.

Пример 7

Гели по примерам 4-6 наносят на тефлоновую поверхность слоем толщиной в 2 мм и помещают в сушильный шкаф на 8 часов при 50°C. В результате получают эластичные прозрачные пленки зеленого цвета толщиной около 0,2 мм.

Пример 8. Определение скорости высвобождения полихолинилфталоцианина цинка из заявляемых пленок в рану

Высвобождение фотосенсибилизатора изучалось следующим образом. Предварительно отобранным животным (мыши BDF1) за сутки до исследования шерсть с поверхности бедра удаляли с помощью крема-депилятора. Перед началом исследования животным давали наркоз (0,1 мл 0,25% droperidoli). Для получения раны вырезали кусочек кожи на бедре мыши диаметром 0.5 см. На поверхность раны и окружающую кожу наносили пленку-аппликатор с полихолинилфталоцианином цинка на 1-2 часа. По истечении этого времени состав удаляли с раневой поверхности животного. Через 3-5 минут мышей умерщвляли дислокацией шейных позвонков, затем извлекали образцы тканей (поверхность раны, кожу, мышцу). Измерение экзогенной флуоресценции тканей проводили ex vivo сразу после умерщвления животного. Для каждой партии препарата исследовали материал, полученный от трех животных, и данные сравнивали с данными, полученными аналогичным образом для животных, не подвергавшихся действию заявляемых пленок (контроль).

Регистрацию флуоресценции проводили контактным способом на лазерной электронно-спектральной установке «ЛЭСА-06». Флуоресценцию возбуждали излучением He-Ne лазера (длина волны генерации 632,8 нм). Интегральную интенсивность полученных спектров флуоресценции в диапазоне 645-736 нм нормировали по интегральной интенсивности сигнала обратного диффузного рассеяния в ткани возбуждающего лазерного излучения (λmax=632,8 нм), определяя, таким образом, нормированную флуоресценцию (Фн) тканей.

Из данных таблицы 2 видно, что препарат преимущественно накапливается в ране, прилежащей мышце и коже и не обнаруживается в печени и отдаленных мышцах и коже. Увеличение времени аппликации пленки от 1 до 2 часов приводит к увеличению Фн фотосенсибилизатора в ране, аналогичная картина наблюдается в прилегающей коже.

Таким образом показано, что разработанный носитель эффективно высвобождает активное вещество в раневую поверхность, при этом время аппликации и концентрация позволяют регулировать количество его поступления в ткани.

Таблица 2
Нормированная флуоресценция в органах и тканях мышей после применения полихолинилфталоцианина цинка в составе пленок по примеру 7
Органы и ткани пленка из геля 0,02% по примеру 4 пленка из геля 0,2% по примеру 5 Контроль
1 час 2 часа 1 час 2 часа
Рана 10,6±0,8 18,5±5,0 >38 >39 1,2±0,1
Кожа прилежащая 2,7±0,5 3,5±0,9 3,1±0,8 4,0±0,8 1,1±0,1
Мышца прилежащая 2,1±0,7 3,0±1,0 2,2±0,6 3,0±0,8 1,2±0,1
Мышца отдаленная 1,2±0,1 1,2±0,1 1,3±0,1 1,2±0,1 1,2±0,1
Кожа отдаленная 1,0±0,2 1,1±0,1 1,3±0,1 1,3±0,2 1,1±0,1
Печень 5,4±0,3 4,7±0,4 5,0±0,4 4,8±0,1 5,2±0,6

Пример 9. Определение скорости высвобождения полихолинилфталоцианина цинка при нанесении заявляемого геля на поверхностную рану

Исследование проводилось на мышах по методике примера 8, нанося на рану вместо пленки 0,05 мл геля по примеру 2. Как видно из таблицы 3, накопление фотосенсибилизатора в ране в случае применения геля, содержащего 0,2% полихолинилфталоцианина цинка, уже через 15 минут достигает значительной величины, при этом в отдаленных участках кожи и мышцах он обнаруживается в незначительных количествах. В печени с увеличением времени аппликации Фн увеличивается, в почках препарат регистрируется в следовых количествах, а в селезенке - только по прошествии 6 часов.

Таблица 3
Нормированная флуоресценция в органах и тканях мышей после нанесения геля по примеру 2 с содержанием 0,2% полихолинилфталоцианина цинка на поверхностную рану
Органы Время аппликации Контроль
15 минут 2 часа 4 часа 6 часов
Рана поверхностная 68,3±6,1 95,1±3,6 93,2±3,2 93,8±4,5 2,5±0,2
Окружающая кожа 2,3±0,6 5,6±0,9 7,7±1,1 7,5±07 2,0±0,2
Окружающая мышца 3,2±0,9 11,1±1,1 10,8±1,6 9,9±2,7 2,5±0,2
Удаленная кожа 1,7±0,3 3,3±0,7 4,1±0,5 2,7±0,8 2,0±0,2
Удаленная мышца 2,3±0,2 3,5±0,4 3,8±0,2 3,0±0,3 2,5±0,2
Жировая ткань 2,3±0,5 2,8±0,4 3,2±0,3 3,0±0,6 2,2±0,3
Печень 7,9±1,8 10,9±2,0 11,0±1,1 12,0±0,7 5,9±0,7
Почки 5,4±0,3 5,9±0,6 5,7±0,9 5,8±0,8 4,3±0,4
Селезенка 9,2±2,3 9,1±1,2 8,9±0,8 14,3±1,8 9,1±0,5

Пример 10. Определение скорости высвобождения полихолинилфталоцианина цинка при нанесении заявляемого геля на глубокую рану

Исследование проводилось аналогично примеру 9. Препарат наносили на рану, полученную удалением не только кожи, но и частично мышцы. Как видно из таблицы 4, накопление полихолинилфталоцианиана цинка в глубокой ране идет очень быстро, при этом в отдаленных участках мышцы и кожи препарат обнаруживается в незначительных количествах. В печени и почках с увеличением времени аппликации Фн увеличивается, а в селезенке препарат регистрируется только через 6 часов.

Таблица 4
Нормированная флуоресценция в органах и тканях мышей после нанесения геля по примеру 2 с содержанием 0,2% полихолинилфталоцианина цинка на глубокую рану
Органы Время аппликации Контроль
15 минут 2 часа 4 часа 6 часов
Рана >100 >100 >100 >100 2,5±0,2
Окружающая кожа 2,5±0,2 6,6±1,8 7,7±2,2 7,6±1,5 2,0±0,2
Окружающая мышца 4,2±0,5 12,4±1,7 12,4±1,2 10,6±2,5 2,5±0,2
Удаленная кожа 2,2±0,2 3,4±0,6 4,0±0,5 3,2±0,6 2,0±0,2
Удаленная мышца 2,6±0,3 3,6±0,5 3,9±0,5 3,0±0,5 2,5±0,2
Жировая ткань 2,2±0,5 3,1±0,5 3,5±0,5 3,1±0,5 2,2±0,3
Печень 8,3±0,9 10,6±1,7 11,0±1,8 12,8±2,1 5,9±0,7
Почки 5,8±0,5 5,7±1,0 5,7±1,0 6,2±1,0 4,3±0,4
Селезенка 9,3±2,9 9,0±1,4 9,3±1,8 14,5±2,2 9,1±0,5

Пример 11

Больной А., 54 года. Диагноз «Незаживающая рана левой голени на фоне сахарного диабета I типа». Объективно: на левой голени имеется гнойная рана площадью 8 см2. На поверхность гнойной раны наносился гель, полученный по методике примера 2 (экспозиция 1 час), и проводилось ежедневное облучение лазером в течение 15 минут Для полного купирования гнойного процесса, осложненного сахарным диабетом I типа, понадобилось 6 процедур АФДТ.

При воздействии АФДТ отмечено быстрое очищение раны от гнойно-некротических масс. Значительно сократились сроки появления грануляций и эпителизации раны. При изучении локальной микроциркуляции в области длительно не заживающей раны отмечено уменьшение отека, улучшение кровотока в микрососудах. Некротические массы на следующие сутки активно отторгались, гнойного отделяемого из раны практически не было. Уже на 3 сутки после завершения сеансов АФДТ отмечалось почти полное очищение раневой поверхности от гнойно-некротического экссудата, что подтверждалось клиническими наблюдениями и данными цитологического исследования. Размеры раны сокращались за счет эпителизации и контракции рубцовой ткани. Следует отметить, что в мазках-отпечатках с поверхности раны после первого сеанса АФДТ значительно уменьшилось количество нейтрофилов, что, возможно, связано с накоплением в них фотосенсибилизатора и последующим разрушением их под действием лазерного излучения. К 7 суткам отмечался краевой рост незрелых эпителиальных клеток, а к 14-м суткам сформировался зрелый эпителиальный пласт с полным заживлением раны.

Пример 12

Больной Б., 77 лет. Диагноз «Посттромбофлебитная болезнь. Трофическая язва тыльной и наружной стороны левой стопы». Объективно: на наружной и тыльной стороне левой стопы имеются два очага трофической язвы площадью 3 и 5 см2, соответственно. Гель, полученный по примеру 2, наносился непосредственно на раневую поверхность, закрывался вощеной бумагой и светонепроницаемой повязкой. Время экспозиции геля составляло 2 ч. Сеансы облучения лазером проводились сразу после аппликации геля. Плотность энергии облучения - 60 Дж/см2, время облучения - 7 мин на каждую зону. Проведено 4 сеанса лечения с интервалом 24 ч.

Лечение привело к сокращению времени всех фаз заживления язвы. Полная эпителизация наблюдалась на 21 сутки после начала лечения.

Таким образом, разработанное средство удобно в применении, обеспечивает проникновение фотосенсибилизатора в обрабатываемые ткани при экономичном расходе препарата и полное заживление ран в минимальные сроки.

1. Средство для лечения гнойных ран методом фотодинамической терапии, включающее полихолинилфталоцианин цинка и воду, отличающееся тем, что оно представляет собой гель следующего состава, мас.%:

полихолинилфталоцианин цинка 0,02-1,00
гидроксиэтилцеллюлоза 1,3-1,6
диметилсульфоксид или бензалконий хлорид
(алкилбензилдиметиламмонийхлорид) 0,2-3,0
блок-сополимер этиленоксида и пропиленоксида или полиэтиленгликоль 3,2-4,0
пропиленгликоль 4,0-7,7
вода остальное

2. Средство для лечения гнойных ран методом фотодинамической терапии, включающее полихолинилфталоцианин цинка и воду, отличающееся тем, что оно представляет собой пленку, полученную путем высушивания геля по п.1.



 

Похожие патенты:

Изобретение относится к области медицины и фармацевтической промышленности и представляет собой гелеобразную или вязкую композицию, пригодную для местного и локального заживления ран на травмированной коже, содержащую эритропоэтин (ЭПО) и по меньшей мере один гелеобразующий полисахарид, поддающийся разбуханию, в концентрации 0,4-4% мас./мас., выбранный из одного или более чем одного члена группы, состоящей из: гидроксиэтилцеллюлозы, гидроксиметилцеллюлозы, карбоксиэтилцеллюлозы, карбоксиметилцеллюлозы, которая может быть получена путем смешивания ЭПО в лиофилизированной или суспендированной форме с предварительно разбухшим полисахаридом, имеющим вязкость менее 5000 мПа·с, и инициации полного разбухания, где полностью разбухший полисахарид имеет вязкость 20000-60000 мПа·с, и ЭПО присутствует в концентрации 100-500 МЕ/г гелеобразной композиции, где указанное смешивание ЭПО достигается путем диффузии ЭПО в геле в течение по меньшей мере 24 ч.

Изобретение относится к области биотехнологии и медицины и представляет собой способ получения резорбируемой полилактидной матрицы для культивирования и имплантации клеток, предназначенных для заживления ран, включающий получение резорбируемой гидрофильной пористой полилактидной матрицы, равномерно покрытой микрофибриллярным коллагеном 1-го типа, для чего предварительно получают гидрофильную пористую полилактидную матрицу толщиной от 13 мкм до 15 мкм и диаметром пор от 2 мкм до 3 мкм, затем проводят нанесение на гидрофильную пористую полилактидную матрицу 0,01%-ного раствора коллагена 1-го типа в 0,1%-ной уксусной кислоте, инкубируют в течение 30 минут при комнатной температуре, далее поверхность матрицы промывают фосфатно-солевым буфером рН 7,4 для удаления несвязавшегося с субстратом белка, процедуру нанесения раствора коллагена 1-го типа проводят еще 2 раза, гидрофильную поверхность пористой полилактидной матрицы, равномерно покрытую микрофибриллярными структурами коллагена диаметром от 10 нм до 20 нм, используют для культивирования кератиноцитов человека.

Изобретение относится к области медицины и фармакологии и представляет собой способ получения средства для стимуляции репаративной регенерации кожного покрова, включающий использование компонентов предварительно фракционированной и лиофилизированной плазмы аутокрови, отличающийся тем, что после фракционирования компоненты плазмы крови подвергают анионообменной хроматографии, выделяют сорбирующиеся на анионообменнике компоненты с Мм 20-30 кД, подвергают их диализу, лиофилизируют, а затем в соотношении 6:1000 вводят в имеющий консистенцию мази состав и в виде аппликаций накладывают его на поверхность кожи в зоне повреждения.
Изобретение относится к медицине. .
Изобретение относится к медицине и может быть использовано для лечения ожоговых ран. .

Изобретение относится к области медицины. .

Изобретение относится к медицине, а именно к области физического способа диагностики площади и степени поражения человека, оказания первой помощи и последующей терапии посредством видимого спектра света и ультразвука.
Изобретение относится к области медицины и фармации и представляет собой фармацевтическую композицию, обладающую венотонизирующим, ранозаживляющим, противовоспалительным действием, содержащую терапевтически эффективное количество гепарина натрия в сочетании с троксерутином и декспантенолом, в качестве вспомогательных веществ пропиленгликоль, трометамол, консервант и воду очищенную, отличающаяся тем, что дополнительно содержит УФ-фильтр Escalol 567, кремнийорганический эластомер DC 9045, кремнийорганический эмульгатор DC 5329, Циклометикон DC 345, антиоксидант Tinogard NOA, акрилатную эмульсию сополимера Salcare SC80, а в качестве консерванта используется Sharomix MC,I, причем компоненты в композиции находятся в определенном соотношении в мас.%.

Изобретение относится к области биотехнологии, конкретно к получению пептидов, обладающих ранозаживляющей активностью, и может быть использовано в медицине. .

Изобретение относится к мази для лечения инфицированных ран в гнойно-некротической фазе раневого процесса. .

Изобретение относится к медицине, онкологии, и может быть использовано для лечения больных раком желудка T3-4 N1-3M0. .
Изобретение относится к медицине, а именно к детской хирургии, и может быть использовано для лечения гемангиом сложной анатомической локализации. .
Изобретение относится к биотехнологии и может быть использовано для сокращения сроков постановки диагноза. .

Изобретение относится к медицине, а именно к детской онкологии, и может быть использовано в комплексном лечении детей с гемангиомами. .
Изобретение относится к медицине, а именно к неврологии, и может быть использовано для лечения вертебрально-базилярной недостаточности. .

Изобретение относится к области медицины, а именно неврологии, нейрохирургии, нейрореабилитации, и может быть использовано для лечения больных с поражением лицевого нерва и возникновением патологических синкинезий и контрактур мимической мускулатуры различной этиологии.

Изобретение относится к области медицины, а именно к физиотерапии, и может быть использовано для лечения различных токсикоманий. .
Изобретение относится к медицине, а именно к физиотерапии, неврологии. .
Наверх