Система управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя

Авторы патента:


Система управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя
Система управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя
Система управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя
Система управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя

 


Владельцы патента RU 2466291:

ЭРСЕЛЬ (FR)

Система управления приводом капотов реверсора тяги для турбореактивного двигателя содержит привод, приводимый в действие электродвигателем, и средства управления электродвигателем. Средства управления электродвигателем включают в себя средства определения и/или оценки температуры снаружи турбореактивного двигателя. Средства управления электродвигателем выполнены с возможностью корректировки развиваемого электродвигателем вращающего момента в зависимости от наружной температуры. Средства определения и/или оценки включают в себя средства измерения температуры, выполненные с возможностью измерять температуру в зоне средств управления и определять температуру снаружи турбореактивного двигателя в зависимости от измеренной температуры. Изобретение позволяет обеспечить функционирование реверсора тяги в экстремальных температурных условиях и предотвратить его быстрый износ. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к системе управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя.

Назначение реверсора тяги состоит в повышении эффективности торможения самолета при его посадке путем перенаправления вперед, по меньшей мере, части тяги, развиваемой турбореактивным двигателем. На этом этапе реверсор перекрывает реактивное сопло, направляя этот поток к передней стороне гондолы, в результате чего создается обратная тяга, которая складывается с торможением колес самолета.

В зависимости от типа реверсора могут использоваться разные средства для достижения подобной переориентации холодного потока. Тем не менее во всех случаях конструктивно реверсор включает в себя подвижные капоты, имеющие возможность перемещаться из выдвинутого положения, в котором они открывают в гондоле канал для отклоненного потока, в убранное положение, в котором они перекрывают указанный канал. Эти подвижные капоты могут, кроме того, выполнять функцию отклонения или всего лишь активации иных отклоняющих средств.

Так, например, в решетчатых реверсорах подвижные капоты скользят по направляющим рельсам таким образом, что при отходе назад на этапе раскрытия они открывают решетки отклоняющих лопаток, находящиеся в толще гондолы. Имеется система тяг, соединяющая этот подвижный капот с блокировочными створками, которые выдвигаются внутрь выпускной трубы, блокируя при этом выход в режиме прямой тяги. В реверсорах же створчатого типа каждый подвижный капот поворачивается таким образом, что он блокирует поток, отклоняя его, и является, таким образом, действующим органом в процессе указанной переориентации.

Привод таких подвижных капотов осуществляется, как правило, с помощью гидравлических или пневматических силовых цилиндров, для которых требуется отдельная сеть подачи текучей среды под давлением. Такую текучую среду традиционно получают либо путем отвода воздуха из турбореактивного двигателя при работе с пневматическими системами, либо отбором из самолетной гидравлической системы. Для подобных систем требуется проведение довольно значительных работ по техобслуживанию, поскольку малейшая утечка из гидравлической или пневматической сети может обнаруживаться с трудом и чревата негативными последствиями как для реверса, так и в других частей гондолы. Кроме того, учитывая наличие недостаточного свободного пространства в передней раме реверсора, монтаж и меры по защите подобной системы оказываются довольно сложными операциями и способствуют излишнему загромождению.

Для устранения разнообразных недостатков, связанных с пневматическими и гидравлическими системами, конструкторы реверсоров тяги предприняли попытки их замены, оборудуя свои реверсоры в максимально возможной степени более легкими и надежными электромеханическими приводами. Такой реверсор описан в документе ЕР 0843089.

Однако электромеханические приводы тоже страдают рядом недостатков, которые необходимо устранить с тем, чтобы можно было в полной мере извлечь пользу из их преимуществ в отношении уменьшения веса и габаритов.

Так, в частности, при работе в экстремальных температурных условиях, то есть при температурах, например, порядка -40°С или порядка 50°С, вращающий момент, создаваемый электродвигателем, приводящим в действие электромеханические приводы, может оказаться недостаточным для приведения их в действие и, следовательно, для обеспечения возможности перемещения подвижных капотов.

Дело в том, что, как было обнаружено, при работе в экстремальных температурных условиях для обеспечения приведения в действие электромеханических приводов требуется, чтобы соответствующий электродвигатель развивал вращающий момент, который превышал бы момент, развиваемый в обычных температурных условиях.

Таким образом, при работе в экстремальных температурных условиях может оказаться под угрозой функционирование реверсора тяги во время посадки самолета, оборудованного подобным реверсором тяги.

Одно из технических решений, направленных на устранение этого недостатка, могло бы состоять в такой настройке электродвигателя, чтобы он мог развивать единый, достаточный для приведения в действие электромеханических приводов и, следовательно, возможности перемещения подвижных капотов реверсора тяги, как в обычных, так и в экстремальных температурных условиях.

Однако в случае непрерывного создания электродвигателем большого вращающего момента возникает опасность быстрого износа этого электродвигателя и связанных с ним электромеханических приводов.

Кроме того, из-за использования значительных токов возможно снижение надежности и срока службы силовых схем электроники, входящих в состав системы управления.

Быстрый износ электродвигателя и электромеханических приводов тем более нежелателен, что создание большого вращающего момента требуется лишь в очень редких случаях, поскольку система управления большую часть времени работает в обычных температурных условиях, когда такой момент не нужен.

Цель изобретения состоит в устранении указанных выше недостатков, а более конкретно - в разработке системы управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя, которая обеспечивала бы перемещение подвижных капотов такого реверсора в экстремальных температурных условиях и в то же самое время позволяла бы предотвратить быстрый износ привода.

Для достижения указанной цели предложена система управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя, содержащая:

- по меньшей мере, один привод капота, приводимый в действие, по меньшей мере, одним электродвигателем,

- средства управления электродвигателем,

отличающаяся тем, что

средства управления электродвигателем включают в себя средства определения и/или оценки температуры снаружи турбореактивного двигателя, причем средства управления электродвигателем рассчитаны таким образом, чтобы можно было регулировать развиваемый электродвигателем вращающий момент в зависимости от этой наружной температуры,

и тем, что средства определения и/или оценки включают в себя средства измерения температуры, выполненные с возможностью измерения температуры в зоне средств управления, причем средства определения и/или оценки рассчитаны таким образом, чтобы они определяли температуру снаружи турбореактивного двигателя в зависимости от измеренной температуры.

Благодаря регулированию вращающего момента, развиваемого электродвигателем, в соответствии с наружной температурой удается создавать, с одной стороны, незначительный вращающий момент при работе в обычных температурных условиях и, с другой стороны, большой вращающий момент при работе в экстремальных температурных условиях.

Это позволяет, в свою очередь, предотвратить быстрый износ привода, а также гарантировать исправное функционирование реверсора тяги в экстремальных температурных условиях.

Кроме того, в силу того, что средства определения и/или оценки включают в себя средства измерения, рассчитанные таким образом, чтобы измерять температуру в зоне средств управления, удается определять наружную температуру с использованием компонентов, помещенных в зоне средств управления, которые находятся на турбореактивном двигателе или в гондоле, без необходимости прибегать к помощи специальных датчиков, выносимых на наружную поверхность силовой установки, и обеспечивать связь с такими выносными датчиками.

Целесообразно, чтобы характеристика регулирования средствами управления развиваемого электродвигателем вращающего момента в соответствии с наружной температурой включала в себя совокупность ступеней, соответствующих разным температурным диапазонам.

В соответствии с одним из вариантов осуществления величина коррекции вращающего момента определяется в начале этапа пуска на всю длительность этапа пуска.

Благодаря этим мерам удается обеспечить простое следящее регулирование двигателя на этапе раскрытия без учета изменений коррекции вращающего момента в ходе выполнения этапа пуска, причем изменения температуры не являются значащими в ходе этого этапа.

Изобретение станет более понятным в ходе изучения нижеследующего описания, приводимого со ссылками на приложенные схематические чертежи, которые иллюстрируют один из вариантов выполнения системы управления в качестве примера, не имеющего ограничительного характера.

Фиг.1 представляет собой частичный вид в аксонометрии гондолы с помещенным в нее решетчатым реверсором тяги;

фиг.2 - схематическое изображение подвижных капотов и их приводной системы;

фиг.3 - схематическое изображение системы управления приводами подвижных капотов;

фиг.4 - две кривые, иллюстрирующие изменение вращающего момента в зависимости от перемещения капотов для двух разных значений температуры при использовании одного заданного режима работы двигателя.

Прежде чем перейти к детальному описанию одного из вариантов осуществления изобретения, важно уточнить, что рассматриваемая здесь система не ограничивается каким-то одним частным типом реверсора тяги. Хотя изобретение описано здесь применительно к решетчатому реверсору, его вполне можно использовать и для других конструкций реверсоров, в частности створчатых.

На фиг.1 приведен частичный схематический вид гондолы с помещенным в нее решетчатым реверсором тяги 1. Турбореактивный двигатель здесь не показан. Указанный реверсор тяги 1 имеет конструкцию, включающую в себя два полукруглых подвижных капота 2, которые могут совершать скользящее перемещение, приоткрывая решетки 3 отклоняющих лопаток, находящиеся между подвижными капотами 2 и секцией для пропускания отклоняемого воздушного потока 4. Внутри конструкции помещены блокировочные створки 5, выполненные с возможностью поворота и перехода из положения, в котором они не препятствуют циркуляции воздушного потока 4, в положение, в котором они блокируют эту циркуляцию. Для того чтобы добиться координации раскрытия подвижных капотов 2 с перекрывающим положением блокировочных створок 5, последние механически соединены с подвижным капотом 2 с помощью шарниров и с неподвижной конструкцией с помощью системы тяг (не показаны).

Перемещение подвижных капотов 2 вдоль наружной поверхности конструкции обеспечивается с помощью группы силовых цилиндров 6а, 6b, смонтированных на передней раме, внутри которой помещены электродвигатель 7 и гибкие передаточные валы 8а, 8b, присоединенные соответственно к силовым цилиндрам 6а, 6b с целью их приведения в действие.

Система привода подвижных капотов 2 показана отдельно на фиг.2. Каждый подвижный капот 2 может совершать поступательное перемещение под действием трех силовых цилиндров 6а, 6b, в состав которых входят один центральный силовой цилиндр 6а и два дополнительных силовых цилиндра 6b, которые приводятся в действие одним электродвигателем 7, подключенным к средствам управления 9, включающим в себя микроконтроллер. Выходная мощность электродвигателя 7 подается прежде всего на центральные силовые цилиндры 6а через посредство двух гибких передаточных валов 8а, а затем на дополнительные силовые цилиндры 6b через посредство гибких передаточных валов 8b.

В соответствии с одним из не представленных здесь вариантов для каждого капота используются только два силовых цилиндра, верхний и нижний, которые приводятся в действие одним электродвигателем, подключенным к управляющему интерфейсу. Выходная мощность электродвигателя подается на два силовых цилиндра, верхний и нижний, через посредство двух гибких передаточных валов 8а.

На фиг.3 схематически изображена система управления приводом двух капотов с использованием для каждого капота двух приводов - верхнего и нижнего.

Как видно на фиг.3, предлагаемая система управления приводами реверсора тяги содержит средства управления электродвигателем 7, образованные микроконтроллером 9.

Этот микроконтроллер соединен с помощью средств связи 10 с системой 12 управления летательным аппаратом.

Кроме того, в состав системы управления входит силовой каскад 13, соединенный с бортовой сетью 14 электропитания летательного аппарата.

Микроконтроллер 9 обеспечивает управление работой электродвигателя 7 и силовых цилиндров, или приводов, 6, как описано выше. Двигатель включает в себя также тормоз 15, работой которого управляет тот же микроконтроллер 9.

В состав микроконтроллера 9 входят средства оценки температуры снаружи турбореактивного двигателя. Эти средства включают в себя измерительный датчик 16 для измерения температуры, выполненный таким образом, чтобы он измерял температуру в зоне расположения микроконтроллера 9.

Средства оценки содержат также средства 17 расчета температуры снаружи турбореактивного двигателя в зависимости от температуры, измеренной в зоне расположения микроконтроллера 9.

Температуру снаружи турбореактивного двигателя рассчитывают с помощью специальных расчетных номограмм, которые предварительно сохранены в расчетных средствах 17.

Таким образом, средства оценки выполнены таким образом, чтобы они могли оценивать температуру снаружи турбореактивного двигателя в зависимости от температуры, измеренной в зоне расположения микроконтроллера 9.

Микроконтроллер 9 выполнен таким образом, чтобы регулировать развиваемый электродвигателем 7 вращающий момент в соответствии с указанной подвергшейся оценке наружной температурой.

Характеристика корректировки микроконтроллером 9 развиваемого электродвигателем 7 вращающего момента в зависимости от оценки наружной температуры включает в себя совокупность ступеней, соответствующих разным температурным диапазонам.

Следует отметить, что значение корректировки вращающего момента определяется в начале этапа пуска на всю длительность этапа пуска.

На фиг.4 приведены две кривые, иллюстрирующие изменение вращающего момента в зависимости от перемещения капотов для двух разных значений температуры, одно из которых соответствует экстремальным условиям, а другое нормальным условиям, и при использовании одного заданного режима работы двигателя. Как можно видеть, корректировку вращающего момента осуществляют применительно к участку кривых, находящемуся в диапазоне перемещения капотов от 200 до 600 мм.

Разумеется, изобретение не ограничивается единственным вариантом осуществления системы, описанным выше в качестве примера, а, напротив, охватывает его всевозможные модификации.

1. Система управления, по меньшей мере, одним приводом (6) капотов (2) реверсора тяги для турбореактивного двигателя, содержащая:
- по меньшей мере, один привод (6) капота (2), приводимый в действие, по меньшей мере, одним электродвигателем (7),
- средства (9) управления электродвигателем (7),
отличающаяся тем, что средства (9) управления электродвигателем включают в себя средства определения и/или оценки температуры снаружи турбореактивного двигателя, причем средства управления электродвигателем выполнены таким образом, чтобы корректировать развиваемый электродвигателем вращающий момент в зависимости от этой наружной температуры, и тем, что средства определения и/или оценки включают в себя средства (16) измерения температуры, выполненные с возможностью измерять температуру в зоне средств управления, причем средства определения и/или оценки выполнены с возможностью определять температуру снаружи турбореактивного двигателя в зависимости от измеренной температуры.

2. Система по п.1, в которой характеристика корректировки средствами управления развиваемого электродвигателем (7) вращающего момента в зависимости от наружной температуры включает в себя совокупность ступеней, соответствующих разным температурным диапазонам.

3. Система по п.1 или 2, в которой величина корректировки вращающего момента определяется в начале этапа пуска на всю длительность этапа пуска.



 

Похожие патенты:

Изобретение относится к способу автоматической калибровки электросиловых цилиндров привода подвижной части гондолы ТРД, связанных, по меньшей мере, с одним датчиком положения, причем способ отличается тем, что содержит этапы, предусматривающие: отвод подвижной части и связанного с ней цилиндра в убранное положение, соответствующее первому положению подвижной части, регистрацию в запоминающем устройстве одной или нескольких величин, возвращаемых датчиком положения в таком положении, отвод подвижной части и связанного с ней цилиндра в выпущенное положение, соответствующее второму положению подвижной части, регистрацию в запоминающем устройстве одной или нескольких величин, возвращаемых датчиком положения в таком положении.

Изобретение относится к способу управления электродвигателем привода подвижного капота при реверсоре тяги турбореактивного двигателя (ТРД). .

Изобретение относится к области авиации, более конкретно к устройству сцепления между двумя элементами гондолы самолета, в частности реверсора тяги. .

Изобретение относится к электрической системе управления, предназначенной для установки в гондоле турбореактивного двигателя летательного аппарата. .

Изобретение относится к способу управления открытием или закрытием турбореактивного реверсора тяги с применением по меньшей мере одной подвижной крышки, установленной с возможностью перемещения посредством по меньшей мере одного электрического двигателя, характеризующемуся тем, что анализируют по меньшей мере один параметр, характеризующий давление в потоке турбореактивного двигателя, и выполняют последовательность операций, в которой рабочие параметры электрического двигателя приводят в соответствие рабочей ситуации.
Изобретение относится к авиации, в частности к способу регулирования величины обратной тяги авиационных газотурбинных двигателей на пробеге самолета. .

Изобретение относится к реверсорам тяги реактивного двигателя. .

Изобретение относится к реверсорам тяги турбореактивного двигателя, содержащих, по меньшей мере, один подвижный элемент (3), по меньшей мере, одно устройство (7) стопорения, содержащее крюк (8), взаимодействующий с захватной деталью (6) для удержания подвижного элемента (3) в закрытом положении, и систему (10) двойного обнаружения закрытия и стопорения, содержащую датчик (15) и позволяющую убедиться, в частности, при появлении сигнала, что подвижный элемент (3) находится в закрытом положении и что устройство (7) находится в застопоренном положении.

Изобретение относится к турбореактивным двигателям. .

Изобретение относится к гондоле турбореактивного двигателя с источником питания для системы привода и управления реверсором тяги и системы привода и управления регулируемым соплом, отличающейся тем, что источник питания выполнен с возможностью переключения между первым положением, в котором он питает систему привода и управления реверсором тяги, и вторым положением, в котором он питает систему привода и управления регулируемым соплом, причем переключение происходит под действием управляющего сигнала от компьютера, предназначенного для приема команды на открытие реверсора тяги

Изобретение относится к способу и системе управления, по меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя, содержащая группу приводных и/или контрольных компонентов

Изобретение относится к системе контроля, которая содержит датчики состояния реверсора тяги турбореактивного двигателя, контрольное вычислительное устройство, - устройство управления реверсором, управляемое вычислительным устройством в зависимости от данных, поступающих от датчиков в вычислительное устройство через устройство управления, устройство регулирования турбореактивного двигателя, управляемое вычислительным устройством в зависимости от данных, поступающих от датчиков в вычислительное устройство через устройство управления

Изобретение относится к способу управления по меньшей мере одним приводом капотов реверсора тяги для турбореактивного двигателя

Изобретение относится к системе для управления множеством различных функций турбореактивного двигателя, причем каждая функция связана с соответствующим исполнительным устройством, при этом упомянутая система содержит электродвигатель, выполненный с возможностью подачи механической энергии в каждое из исполнительных устройств; электронный блок управления для электрического двигателя и по меньшей мере одно переключательное устройство, расположенное между электродвигателем и исполнительными устройствами, при этом переключательное устройство (устройства) служит для распределения механической энергии, поставляемой электродвигателем, избирательно в одно из исполнительных устройств

Изобретение относится к системе управления, но меньшей мере, одним приводом капотов реверсора тяги для турбореактивного двигателя, содержащая группу приводных и/или контрольных компонентов, которая содержит, по меньшей мере, один привод капота, приводимый в действие, по меньшей мере, одним электродвигателем, и средства управления электродвигателем

Изобретение относится к авиации и касается устройств для изменения вектора тяги двухконтурных турбореактивных двигателей, установленных на самолетах-амфибиях. Устройство реверса-нейтрализатора тяги содержит герметичные поворотно-реверсные решетки и створки. Поворотно-реверсные решетки размещены в неподвижном корпусе и выполнены с возможностью перемещения между фиксируемыми положениями, соответствующими открытому и закрытому положению реверса тяги. Створки перекрывают внешний вентиляторный контур и соединены с помощью рычажного механизма с поворотно-реверсными решетками через гидроцилиндр, приводимый в действие от центрального пульта управления двигателями. Устройство снабжено блоком системы управления реверсом-нейтрализатором, отображающим положение поворотно-реверсных решеток во всем рабочем диапазоне. На входе блока установлен тумблер управления нейтрализации тяги, взаимодействующий через центральный пульт управления двигателями. Выход блока соединен с электромеханизмами и клапанами гидроцилиндров. В устройство введены механические поводки, шарнирно закрепленные на поворотно-реверсных решетках. Достигается расширение эксплуатационных возможностей самолета-амфибии при проведении спасательных операций на водной поверхности с работающими двухконтурными турбореактивными двигателями, повышение надежности и ресурса силовой установки, улучшение взлетно-посадочных характеристик самолета-амфибии. 4 ил.

Линейный привод многократного действия (100) предназначен для использования в реверсоре тяги гондолы турбореактивного двигателя и приведения по меньшей мере двух подвижных элементов в движение относительно друг друга и относительно неподвижного элемента. Привод содержит совокупность концентрических цилиндрических тел (103, 102, 104), образующих штанги и последовательно зацепляющихся друг с другом посредством наружных и внутренних резьб (105, 106, 107, 108). Одно из тел соединено со средствами (109) приведения во вращение. Остальные тела образуют вместе внутреннюю и наружную приводные цепи, причем указанные остальные тела связаны со средствами избирательной блокировки. Вращение крайних тел внутренней и наружной приводных цепей постоянно заблокировано. Привод обеспечивает дифференциальные движения, в результате чего указанные два подвижных элемента способны перемешаться с различными скоростями. Достигается легкость конструкции при обеспечении автоматической синхронизации между различными подвижными телами. 12 з.п. ф-лы, 9 ил.

Изобретение относится к энергетике. Система управления двумя гондолами турбореактивного двигателя содержит два блока управления питанием, каждый из которых выполнен с возможностью преобразования электроэнергии средства для подвода высоковольтного электропитания в электроэнергию по меньшей мере одного средства для подачи электропитания к электромеханическому приводу с обеспечением электромеханического привода электропитанием необходимой мощности, по меньшей мере по одному приводному входу для каждого блока управления питанием, а также один управляющий блок, подающий управляющие команды на блоки управления питанием, отличный и отдельный от последних, и содержащий по меньшей мере один управляющий вход для приема данных от контроллера двигателей и по меньшей мере два приводных выхода для соединения с приводными входами блоков управления питанием. Изобретение позволяет упростить процедуру сертификации контроллера. 2 н. и 13 з.п. ф-лы, 2 ил.
Наверх