Способ испытания алмазных зубков на прочность и устройство для его осуществления

Авторы патента:


Способ испытания алмазных зубков на прочность и устройство для его осуществления
Способ испытания алмазных зубков на прочность и устройство для его осуществления
Способ испытания алмазных зубков на прочность и устройство для его осуществления

 


Владельцы патента RU 2466377:

Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к области производства буровых алмазных долот, а именно к входному контролю качества алмазных зубков. Сущность: из партии зубков выбирают пару зубков. Производят нагрев зубков до температуры пайки при их монтаже в корпусе бурового алмазного долота. Зубки устанавливают в оправке таким образом, чтобы зубки вошли в соприкосновение рабочими поверхностями, при этом площадь соприкосновения нормируется геометрией оправки. Оправку с зубками размещают на нагружающем устройстве, оснащенном датчиком величины нагружения. Производят сжатие зубков с фиксированной скоростью нагружения до разрушения рабочей кромки хотя бы одного из зубков и оценивают прочность алмазных зубков по величине разрушающей нагрузки, определяемой по показаниям датчика величины нагружения. Устройство состоит из оправки с отверстиями для установки пары алмазных зубков, нагружающего устройства с датчиком величины нагружения со сферической опорой, снабженным пиковым детектором. Отверстия в оправке расположены таким образом, чтобы обеспечить возможность установки зубков с фиксированной площадью перекрытия рабочих кромок. Оправка снабжена магнитной опорой, а высота оправки подбирается таким образом, чтобы один из вставляемых зубков выступал над поверхностью оправки. Технический результат: возможность быстрой и объективной оценки прочности рабочей поверхности алмазных зубков, поступающих на сборку. 2 н.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к области производства буровых алмазных долот, а именно к входному контролю качества алмазных зубков.

Анализ отечественных и зарубежных патентов и других литературных источников показал, что в настоящее время отсутствуют известные методы и устройства для испытания алмазных зубков на прочность. В связи с этим прототип и аналоги настоящего изобретения не были выявлены.

Технический результат настоящего изобретения заключается в возможности быстрой и объективной оценки прочности рабочей поверхности алмазных зубков, поступающих на сборку.

Технический результат достигается тем, что из партии зубков выбирают пару зубков, далее производят нагрев зубков до температуры пайки при их монтаже в корпусе бурового алмазного долота, затем зубки устанавливают в оправке таким образом, чтобы зубки вошли в соприкосновение рабочими поверхностями, при этом площадь соприкосновения нормируется геометрией оправки. Затем оправку с зубками размещают на нагружающем устройстве, оснащенном датчиком величины нагружения, производят сжатие зубков с фиксированной скоростью нагружения до разрушения рабочей кромки хотя бы одного из зубков и оценивают прочность алмазных зубков по величине разрушающей нагрузки, определяемой по показаниям датчика величины нагружения. Перед испытаниями производят нагрев зубков до температуры пайки при их монтаже в корпусе бурового алмазного долота. Устройство для осуществления заявленного способа, состоит из оправки с отверстиями для установки пары алмазных зубков, нагружающего устройства с датчиком величины нагружения со сферической опорой, снабженным пиковым детектором, при этом отверстия в оправке расположены таким образом, чтобы обеспечить возможность установки зубков с фиксированной площадью перекрытия рабочих кромок. Оправка снабжена магнитной опорой, а высота оправки подбирается таким образом, чтобы один из вставляемых зубков выступал над поверхностью оправки.

Сущность предлагаемого способа заключается в том, что производят статическое сжатие алмазных зубков, соприкасающихся друг с другом рабочими кромками, и определяют критическую нагрузку скалывания - минимальную механическую нагрузку, вызывающую скол рабочей кромки хотя бы одного из контактирующих зубков. Варианты схем взаимного расположения зубков при испытаниях приведены на фиг.1, где 1' - алмазная вставка, 2' - твердосплавное тело зубка, Р - вектор прикладываемой нагрузки. Это напряжение должно превышать давление на зубок, вызванное реакцией самой твердой фазы разрушаемой на забое породы. Критические напряжения лимитируют максимальный крутящий момент долота и твердость разрушаемой породы. Чем выше критические напряжения зубков, тем выше твердость породы, в которую может врезаться долото. Этим обосновывается объективность выбранного критерия качества. Поскольку критическая нагрузка зависит от площади соприкосновения зубков, при испытаниях для всех типов зубков необходимо нормировать номинальную площадь контакта испытываемых зубков друг с другом, что обеспечивается геометрией оправки.

Для повышения объективности оценки прочности алмазных зубков следует также учесть влияние нагрева, которому подвергаются зубки в процессе пайки при их монтаже в корпусе бурового алмазного долота. Для этого перед проведением испытаний зубков на прочность производят их нагрев, имитирующий процесс пайки зубков.

Заявленный способ испытания алмазных зубков осуществляют по следующим этапам.

1. Подготавливают зубки (нагрев в печи до температуры процесса пайки).

2. Устанавливают зубки в специальную оправку, обеспечивающую фиксированное взаимное перекрытие зубков.

3. Устанавливают оправки в нагружающем устройстве, снабженном датчиком величины нагружения.

4. Осуществляют сжатие зубков до скола кромки алмазной вставки одного из зубков с одновременной регистрацией критической нагрузки сжатия.

5. Снимают зубки из оправки и проводят анализ величины и характера скола.

6. Производят статистическую обработку результатов испытаний и занесение в базу данных.

Устройство для реализации способа испытания алмазных зубков на прочность включает нагружающее устройство, связанное с датчиком величины нагружения и оправкой с испытуемыми зубками, обеспечивающее возможность контроля величины нагружения зубков.

Схема заявленного устройства приведена на фиг.2, где А - оправка; Б - датчик величины нагружения; В - нагружающее устройство; 1 - подвижная губка; 2 - корпус оправки; 3, 8 - фиксирующие винты; 4, 5 - постоянные магниты для фиксации датчика величины нагружения; 6 - постоянный магнит для фиксации сферической опоры; 7 - сферическая самоустанавливающаяся опора; 9, 10 - алмазные зубки; 11, 12 - постоянные магниты для фиксации оправки; 13 - неподвижная губка; 14 - корпус датчика величины нагружения.

Подвижная губка 1 нагружающего устройства В связана с оправкой А, включающей постоянные магниты 11 и 12, корпус оправки 2, фиксирующие винты 3 и 8 и размещенные в ней алмазные зубки 9 и 10, установленные рабочими кромками друг к другу. Неподвижная губка 13 нагружающего устройства В связана с датчиком величины нагружения Б, включающем постоянные магниты 4, 5 и 6, корпус датчика величины нагружения 14, сферическую самоустанавливающуюся опору 7.

В качестве нагружающего устройства могут использоваться устройства с различным приводом (механическим, гидравлическим и др.), например машинные тиски, гидравлический пресс и т.д., позволяющие развивать нагрузки, достаточные для разрушения сдавливаемых рабочих кромок алмазных зубков и обеспечивать равномерную скорость нагружения.

Датчик величины нагружения при испытаниях передает давление от нагружающего устройства на испытуемые зубки через сферическую самоустанавливающуюся опору, что позволяет предотвратить концентрацию напряжений на нерабочей части зубка, соприкасающегося с этой опорой, поскольку обратное может привести к разрушению зубка в месте контакта со сферической опорой. Для предотвращения выпадения сферической опоры из датчика величины нагружения в сферическом углублении корпуса датчика величины нагружения установлен постоянный магнит. Датчик величины нагружения фиксируется на нагружающем устройстве также с помощью постоянных магнитов. На корпусе датчика величины нагружения приклеены тензорезисторы, преобразующие деформацию корпуса датчика величины нагружения при сжатии в пропорциональный электрический сигнал, передаваемый на регистрирующее устройство, например вольтметр, осциллограф, аналого-цифровой преобразователь для компьютерных систем сбора данных и др. Диапазон измеряемых нагрузок датчика величины нагружения должен быть не меньше диапазона рабочих нагрузок нагружающего устройства. Поскольку в момент разрушения зубка показание нагрузки может измениться, датчик величины нагружения дополнительно снабжен пиковым детектором, позволяющим сохранять показания величины нагрузки на регистрирующем устройстве в момент разрушения зубка до осуществления сброса этих показаний оператором.

Оправка имеет два отверстия для установки в них испытуемой пары алмазных зубков, при этом отверстия в оправке расположены таким образом, чтобы обеспечить возможность установки зубков с фиксированной площадью перекрытия рабочих кромок. Для возможности закрепления оправки на нагружающем устройстве она снабжена магнитной опорой, высота оправки подбирается таким образом, чтобы один из вставляемых зубков выступал над поверхностью оправки, а размеры отверстий оправки должны обеспечивать возможность установки в них испытуемых зубков. Для удобства вынимания зубков из оправки дополнительно предусмотрены технологические отверстия, через которые можно выбить зубки из оправки с помощью штифта, и фиксирующие винты, с помощью которых выбираются зазоры при установке зубков в оправку.

Пример реализации способа.

Для реализации заявляемого способа было изготовлено устройство, включающее: нагружающее устройство с механическим приводом (машинные тиски), обеспечивающее сжимающую нагрузку до 30 кН; датчик величины нагружения (тензометрический), оснащенный пиковым детектором, с пределом измерений 30 кН и точностью ±5% от предела измерений; систему сбора данных с частотой выборок 1 кГц; стрелочный индикатор, отградуированный в диапазоне до нагрузки 40 кН. Кроме того, была изготовлена оправка (фиг.3). Размеры оправки для испытания алмазного зубка диаметром 13,3 мм представлены в таблице.

Размеры оправки, мм
А Б В Г Д Е Ж
14 13,06 18 25 30 5 18

Для реализации способа испытания на прочность алмазных зубков были выбраны по два зубка из партий алмазных зубков производства США и Китая. Выбранные зубки поместили в печь и нагрели до температуры 600°С. Затем зубки установили в оправку согласно фиг.2а. Нагружение зубков производили при помощи машинных тисков со скоростью нагружения 5 кН в с до скалывания алмазной вставки на одном из зубков, после чего оценивали разрушающее напряжение. В результате испытания установлено, что для алмазных зубков производства США разрушающая нагрузка составляет 18 кН, а для алмазных зубков производства Китая 20 кН. При этом испытания заняли в среднем по 5 мин. Вышеуказанный пример подтверждает высокую производительность испытаний и объективность получаемых данных.

На фиг.1 показаны варианты схем взаимного расположения зубков при испытаниях, а - с параллельным расположением осей зубков; б - со скрещивающимся расположением осей зубков; 1' - алмазная вставка (рабочая поверхность); 2' - твердосплавное тело зубка.

На фиг.2 показаны схемы устройства для испытания алмазных зубков на прочность; а - с параллельным расположением осей зубков; б - со скрещивающимся расположением осей зубков.

На фиг.3 показана оправка для испытаний алмазных зубков на статическое сжатие с номинальной площадью контакта 1 мм2.

1. Способ испытания алмазных зубков на прочность заключается в том, что из партии зубков выбирают пару зубков, далее производят нагрев зубков до температуры пайки при их монтаже в корпусе бурового алмазного долота, затем зубки устанавливают в оправке таким образом, чтобы зубки вошли в соприкосновение рабочими поверхностями, при этом площадь соприкосновения нормируется геометрией оправки; затем оправку с зубками размещают на нагружающем устройстве, оснащенном датчиком величины нагружения, производят сжатие зубков с фиксированной скоростью нагружения до разрушения рабочей кромки хотя бы одного из зубков и оценивают прочность алмазных зубков по величине разрушающей нагрузки, определяемой по показаниям датчика величины нагружения.

2. Устройство для осуществления способа по п.1 состоит из оправки с отверстиями для установки пары алмазных зубков, нагружающего устройства с датчиком величины нагружения со сферической опорой, снабженным пиковым детектором, при этом отверстия в оправке расположены таким образом, чтобы обеспечить возможность установки зубков с фиксированной площадью перекрытия рабочих кромок; оправка снабжена магнитной опорой, а высота оправки подбирается таким образом, чтобы один из вставляемых зубков выступал над поверхностью оправки.



 

Похожие патенты:

Изобретение относится к технике наземных испытаний элементов летательных аппаратов. .

Изобретение относится к обработке металлов давлением, в частности к испытаниям на прочность неразъемных механических соединений, образованных пластической деформацией материала трубы, размещенного в полости имитатора.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, предназначенному для гидроиспытаний корпусов ракетных двигателей на твердом топливе (РДТТ) на внутреннее давление.

Изобретение относится к способам оценки ресурса металла труб продуктопроводов в газовой, нефтяной, нефтехимической и других отраслях промышленности. .

Изобретение относится к технике определения лабораторными методами прочностных и деформационных характеристик различных материалов под контролируемой трехосной статической и/или динамической нагрузкой, например, грунтов при инженерных изысканиях в строительстве.

Изобретение относится к испытательной технике, а именно к способам и устройствам для динамического испытания пластинчатых образцов, имеющих упругие свойства, и может быть использовано для оценки циклической прочности материалов.

Изобретение относится к горной промышленности и предназначено для количественной оценки натурных наблюдений геомеханической роли закладочного массива (ЗМ) при его взаимодействии с породными целиками (ПЦ) различного производственного назначения.

Изобретение относится к пищевой промышленности. .

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к исследованию прочностных свойств тончайших пленочных материалов. .

Изобретение относится к технике испытаний труб для магистральных газопроводов

Изобретение относится к диагностированию сосудов, работающих под действием статических и малоцикловых нагрузок от внутреннего избыточного давления, и может быть использовано для оценки прочности сосудов при диагностировании с учетом фактических параметров нагруженности их конструктивных узлов и элементов. Стенд содержит корпус, нижнюю опору, патрубки, механизм нагружения. Корпусом служит уменьшенная модель исследуемого сосуда со штуцерным узлом, состоящим из патрубка и обечайки, а механизмом нагружения является насос, связанный с патрубком подвода жидкости через поршневой гидроцилиндр. Штуцерный узел снабжен тремя тензорезисторами, соединенными с тензостанцией, и установленными один на наружную поверхность обечайки на расстоянии 3-5 мм от сварного шва, второй на внутренней поверхности патрубка в точке пересечения образующих внутренних поверхностей обечайки и патрубка, а третий - на внутреннем торце патрубка. На корпусе и насосе установлены манометры. Технический результат: достоверная оценка фактической нагруженности оборудования, а также уменьшение погрешности оценки прочности и ресурса сосудов и аппаратов, непосредственное испытание которых затруднительно или даже невозможно в виду того, что они находятся в эксплуатации и (или) испытание их натурных конструкций имеют высокую трудоемкость. 3 ил.

Изобретение относится к ракетной технике, а именно к стендам, которые предназначены для проведения гидроиспытаний корпусов ракетных двигателей на твердом топливе (РДТТ). Стенд содержит имитатор корпуса сопла и разгрузочное устройство с двумя поршнями и цилиндрами разных диаметров, поршень меньшего диаметра расположен в цилиндре, выполненном в поршне большего диаметра, цилиндр которого через имитатор корпуса сопла связан с задним фланцем корпуса. Технический результат заключается в сокращении длительности и стоимости проведения гидроиспытаний корпуса РДТТ. 4 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка содержит корпус, установленные на нем вал с приводом вращения, гидроцилиндр, закрепленный на валу перпендикулярно его оси, размещенные в гидроцилиндре поршень, фиксатор положения поршня в гидроцилиндре, захват для соединения с торцом образца, закрепленный на поршне в подпоршневой полости, и источник среды, соединенный с подпоршневой полостью гидроцилиндра посредством входного отверстия в гидроцилиндре. Источник среды выполнен в виде второго гидроцилиндра с поршнем и штоком, заполненного средой и соединенного с входным отверстием первого гидроцилиндра, и механизма возвратно-поступательного перемещения штока, при этом средой является жидкость или газ. Технический результат: расширение функциональных возможностей установки путем проведения испытаний как при постоянном, так и при циклическом объемном или плоском нагружении с неравномерным распределением нагрузки и с перемещением зоны нагружения по длине образца с обеспечением переходов от нагружения растягивающими массовыми нагрузками к нагружению сжимающими массовыми нагрузками и с регулированием величины зоны распространения неравномерного распределения нагрузки по длине образца в ходе испытаний. 2 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике. Призматический образец имеет форму призмы, продольную и поперечную плоскости симметрии, два боковых выступа, расположенных продольно, по концам призмы - опорные поверхности, а в центральной ее части - поверхность нагружения поперечной испытательной нагрузкой. Призматический образец дополнительно снабжен наклонными опорными поверхностями, расположенными на боковых продольных выступах призмы и характеризуемыми углами наклона к продольной плоскости симметрии призмы 5…20°. Технический результат: упрощение и снижение стоимости процесса испытания призматического образца с концентраторами механических напряжений при сложном напряженном состоянии, а также обеспечение необходимой точности моделирования вида напряженно-деформированного состояния материала конструкции в очаге его разрушения. 1 з.п. ф-лы, 4 ил.

Изобретение относится к лабораторному моделированию в геофизике с применением электрогидравлического, программно управляемого пресса и может быть использовано для исследований процессов разрушения горных пород с целью отработки методик и алгоритмов прогнозирования сейсмической опасности в природных массивах. Сущность: на начальном этапе ступенчато через заданные равные интервалы времени смещают положение плиты пресса на заданное значение. На каждой ступени регистрируют поток акустической эмиссии, выделяют одиночные акустические события, определяют интенсивность потока акустической эмиссии. При достижении интенсивности акустической эмиссии заданного значения уменьшают на каждой следующей ступени величину смещения положения плиты пресса, поддерживая интенсивность акустической эмиссии на заданном уровне. При достижении величины ступенчатого смещения положения плиты пресса минимально допустимого значения и превышении интенсивности акустической эмиссии заданного значения при каждом следующем ступенчатом смещении увеличивают интервалы времени смещения положения плиты пресса. При последующем снижении интенсивности акустической эмиссии ниже заданного значения уменьшают интервалы времени смещения положения плиты пресса до заданного на начальном этапе значения. Технический результат: увеличение количества акустических событий при разрушении зерен горной породы, фиксируемых в процессе испытания образца. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано в строительной отрасли. Предлагаемый способ заключается в том, что предварительно выявляют место наибольшей осадки фундамента здания. В этом месте на поверхность фундамента на высоте 50-60 см от подошвы фундамента или выше первого уступа фундамента наклеивают три тензорезистора и измеряют их омическое сопротивление R0. Тензорезисторы изолируют от внешнего воздействия, после чего выше тензорезисторов устраивают карман, который продувают и высушивают, и снова измеряют сопротивление тензорезисторов R1. Далее в карман вводят плоскую камеру в виде сегмента круга, предварительно смазанную эпоксидной смолой, и нагнетают в камеру масло до давления, при котором омическое сопротивление тензорезисторов вернется от R1 к R0. Давление на грунт основания q под подошвой фундамента определяют по давлению масла в камере по формуле. Также давление контролируют по значениям сопротивлений тензорезисторов R1 и R0 по формуле. После измерения давления в фундаменте камера остается в кармане для дальнейшего мониторинга давления в фундаменте и основании. Технический результат заключается в уменьшении концентрации напряжений в фундаменте, повышении остаточной несущей способности фундамента. 3 ил.

Изобретение относится к области исследования и анализа твердых материалов путем определения их прочностных свойств, а именно определения коррозии и трещин в металлических запорных элементах - напорных клапанах высокого давления гидрорезного оборудования в процессе их циклического нагружения во время работы насоса, и может быть использовано для оценки их работоспособности. Сущность: образцы запорных элементов подвергают циклической нагрузке давлением воды с интервалом между циклами нагружения 0,05-0,1 с. Технический результат: возможность достоверного определения ресурса работы запорного элемента гидрорезного оборудования за счет осуществления процесса максимально приближенным к реальным условиям. 1 ил., 1 табл.

Использование: для тестирования истинной прочности или жесткости твердых или сверхтвердых компонентов, используя акустическую эмиссию. Сущность изобретения заключается в том, что устройство тестирования на основе акустической эмиссии содержит тестируемый образец, включающий твердую поверхность, акустический датчик, индентор, соединенный с твердой поверхностью, и нагрузку. Нагрузка прикладывается к индентору, который передает нагрузку на твердую поверхность. Нагрузку повышают до пиковой нагрузки, выдерживают в течение определенного времени и затем понижают. Акустический датчик соединен с возможностью передачи данных с тестируемым образцом и детектирует одно или более акустических событий, возникающих в тестируемом образце. Система тестирования на основе акустической эмиссии включает в себя блок записи данных, соединенный с устройством тестирования. Блок записи данных записывает данные из устройства тестирования. На основе принятых данных объективно определяется жесткость образца, и по жесткости образец может быть расположен в определенном порядке по отношению к другим образцам. Технический результат: повышение точности тестирования жесткости на основе акустической эмиссии. 3 н. и 25 з.п. ф-лы, 23 ил.

Изобретение относится к способам определения прочности сцепления волокон в одноосноориентированных волокнистых композитных материалах, применяемых в строительных конструкциях и изделиях. Сущность: осуществляют закрепление цилиндрического образца, имеющего на одном торце буртик, образованный вытачиванием кольцевой прямоугольной канавки, предназначенной для размещения захвата разрывной машины, в захватах разрывной машины. Прикладывают нагрузку и замеряют растягивающее усилие в момент сдвига буртика относительно центральной части образца, а прочность сцепления волокон материала определяют по математической формуле. Технический результат: повышение точности испытания и получение достоверных значений показателя прочности сцепления волокон одноосноориентированных волокнистых композитных материалов. 3 ил.
Наверх