Способ определения координат сверхзвукового низколетящего объекта по следу на морской поверхности

Изобретение относится к области радиолокационного приборостроения и может быть использовано при обнаружении и сопровождении сверхзвуковых низколетящих над морской поверхностью объектов. Технический результат - повышение точности. Для достижения данного результата после обнаружения следа объекта на морской поверхности радиолокационным способом определяются дальность до фронта следа и пеленг на фронт следа, производится измерение ширины следа способом радиолокационного стробирования по дальности. Курс движения объекта определяется пространственной ориентацией следа. Скорость объекта определяется по перемещению фронта следа. По классификационным признакам объекта определяется интенсивность и скорость ударной волны объекта. При известной длине излучаемой радиолокатором электромагнитной волны и углу скольжения при облучении морской поверхности радиолокатором по полученным параметрам определяют дальность до объекта и его пеленг. 3 ил.

 

Изобретение относится к области радиолокации, в частности к обнаружению, определению координат и сопровождению малозаметного низколетящего над морской поверхностью (МП) со сверхзвуковой скоростью объекта.

Изобретение позволяет сопровождать даже полностью невидимые летящие вблизи морской поверхности объекты при скорости объекта, приводящей к образованию ударных волн в окружающем пространстве. На момент обнаружения предполагается равномерное прямолинейное перемещение объекта над МП без изменения высоты полета, со скоростью, превышающей 1,2 числа Маха.

Способ может быть осуществлен расположенным на судне (летательном аппарате) автономным радиолокатором в пределах радиогоризонта, а также с применением многопозиционной радиолокации.

В прототипе [1] предложен способ определения координат сверхзвукового низколетящего объекта по следу на морской поверхности. Предложение строится на создании за объектом возмущения воздушного пространства (псевдозвуковой волны). В [1] предполагается, что при угле падения звуковой волны на МП более 12,7° звуковая волна отражается от границы сред (водной поверхности), в результате чего передача энергии значительно уменьшается. Однако энергия воздействия звуковой волны меньше энергии ударной волны. Следовательно, необходимое для образования радиолокационного контраста уменьшение высоты волн ряби морской поверхности в большей степени зависит от воздействия ударной волны, образованной пролетом над морской поверхностью объекта. Импульс давления (ударная волна) воздействует на рябь вне зависимости от угла падения, следовательно, нет надобности в измерении среднего уклона крупных волн.

Аналогом предложенного изобретения можно назвать способ [2], в котором измерение ширины следа производится на этапе его расширения. Это обстоятельство ограничивает применимость способа, так как требует очень высокую разрешающую способность радиолокатора. В способе [2] скорость перемещения воздействующей силы, образующей аномалию морской поверхности, соответствует скорости звука, которая меньше скорости ударной волны. Значительная ошибка в скорости воздействующей силы снижает точность измерения параметров движения объекта.

Способ определения координат объекта основан на наличии за объектом следа - протяженной аномалии МП, имеющей радиолокационный контраст относительно остальной МП.

Для осуществления способа требуется наличие «портретов» (базы данных классификационных признаков) известных сверхзвуковых низколетящих объектов: таблицы с данными величин интенсивностей ударных волн, скоростей ударных волн и расстояний от оси движения объекта до границы образованного ударной волной следа. Объектам, имеющим идентичный планер, двигатель и скорость, будет соответствовать одинаковый «портрет». Входными данными «портрета» являются различные классификационные признаки объекта, в том числе скорость движения объекта. Выводными данными «портрета» являются интенсивность и скорость ударной волны объекта.

При обнаружении следа по радиолокационной отметке фронта следа определяются дальность до фронта следа Дфр и пеленг на фронт следа Пфр. Фронт следа перемещается с такой же скоростью, что и объект. По перемещению радиолокационной отметки фронта следа определяется скорость движения объекта.

Курс движения объекта Коб определяется по пространственной ориентации следа, а не по направлению перемещения фронта следа, что повышает точность определения курса при использовании радиолокатора кругового обзора.

По пеленгу на фронт следа Пфр и курсу объекта Коб определяется курсовой угол с фронта следа на радиолокатор - βфр:

Курсовой угол с фронта следа на радиолокатор вычисляется в случае, если пеленг с радиолокатора на фронт следа больше курса объекта, как модуль разности, где уменьшаемое - пеленг с радиолокатора на фронт следа, вычитаемое - сумма курса фронта следа и 180 градусов, а в противном случае как модуль разности, где уменьшаемое - сумма пеленга с радиолокатора на фронт следа и 180 градусов, вычитаемое - курс фронта следа.

При радиолокационном зондировании МП методом стробирования снимаются значения измеренной ширины следа Визм, потом значения усредняются, и рассчитывается значение ширины следа Врасч:

где - усредненная измеренная ширина следа.

Объект будет находиться относительно фронта следа в направлении перемещения фронта впереди на расстоянии Х (см. фиг.1):

где h - высота полета объекта;

Vоб - скорость объекта;

νув - скорость ударной волны, образованной объектом;

ΔХфр - расстояние между объектом и фронтом следа, образованное инерцией реакции МП на воздействие ударной волны:

ΔXфр=Δtфр·Vоб,

Δtфр - время реакции МП на воздействие импульса давления (ударной волны) можно оценить примерно двумя периодами ряби:

где lр - радиус пространственной корреляции мелкоструктурных ветровых волн (ряби), для которых выполняется условие резонансного рассеяния электромагнитных волн длиной λ под углом скольжения ψ (условие Брегга):

;

Vвр - скорость распространения ряби на морской поверхности (то есть свободных поверхностных волн на глубокой воде) [3, с.155]:

где g - ускорение свободного падения, g≈9,8 м/с;

Λ - длина поверхностно-капиллярной волны (ряби), Λ≈2·lр [4];

z - нормированный на давление коэффициент поверхностного натяжения на границе сред воды и воздуха, z≈7·10-5 м32.

Учет времени реакции МП на воздействие ударной волны приводит к преобразованию формулы расчета Х к виду:

При рассмотрении процесса образования аномалии МП с точки зрения интересов радиолокационного зондирования МП граница аномалии определяется границей радиолокационного контраста аномалии.

Радиолокационный контраст аномалии образуется за счет «контраста зон со сглаженным волнением по отношению к фону» [5, с.212]:

где hф и hс - высоты волн ряби у фона и аномалии соответственно.

Уменьшение высоты волн ряби вызвано воздействием ударной волны от сверхзвукового низколетящего объекта. Величина изменения высоты волн ряби Δhс=hф-hс зависит от интенсивности ударной волны.

При условии конического распространение фронта ударной волны [6] основные потери интенсивности приходятся на расширение фронта волны:

где Iк - интенсивность ударной волны при коническом распространении;

Iпл - интенсивность ударной волны в случае плоской волны;

Rк - радиус основания конуса;

hк - высота конуса.

Существует расстояние Rк, при котором Iк будет недостаточно для образования контраста, необходимого для различения аномалии. Следовательно, расстояние R (см. фиг.2) - это радиус основания конуса Rк, соответствующий минимальному значению интенсивности ударной волны Iа, достигшей морской поверхности и вызвавшей различимую радиолокатором аномалию. Заменим пространственные величины конуса на пространственные параметры образования аномалии (см. фигуры 2, 3):

где Iоб - интенсивность ударной волны, формируемой объектом, приведенная к оси движения объекта (пересчитанная из данных замеров интенсивности ударной волны реального объекта в данные при условии точечного излучателя);

L - расстояние от фронта аэродинамической аномалии на морской поверхности до границы прекращения ее расширения:

«Ударная волна распространяется по невозмущенному веществу со сверхзвуковой скоростью тем большей, чем больше интенсивность ударной волны» [6, с.778]. По этому, скорость распространения ударной волны будет зависеть от расстояния между осью движения объекта и границей следа на МП - R (см. фиг.2).

Расстояния от оси движения объекта до границы образованного ударной волной следа рассчитывается по техническим параметрам полета объекта:

Ширина аномалии после прекращения расширения (максимально возможная ширина) вычисляется по теореме Пифагора из треугольника (см. фиг.2):

Следовательно,

Проекция на морскую поверхность расстояния от объекта до фронта следа рассчитывается как произведение скорости полета объекта и суммы квадратных корней, первый квадратный корень - разность, где уменьшаемое отношение минимального значения интенсивности ударной волны, достигшей морской поверхности и вызвавшей различимую радиолокатором аномалию, к произведению числа π, интенсивности ударной волны объекта, скорости ударной волны и корня квадратного из суммы квадратов скорости ударной волны и скорости полета объекта, а вычитаемое - это отношение квадрата произведения усредненной измеренной ширины следа и косинуса курсового угла с фронта следа на радиолокатор к произведению числа 4 и квадрата скорости ударной волны, второй квадратный корень - отношение произведения числа 2, корня квадратного из числа 2 и длины электромагнитной волны в третьей степени к сумме, где первое слагаемое - это произведение квадрата длины электромагнитной волны, ускорения свободного падения и косинуса угла скольжения электромагнитных волн, а второе слагаемое - это удвоенное произведение числа π в четвертой степени, нормированного на давление коэффициента поверхностного натяжения на границе сред воды и воздуха, а также косинуса угла скольжения в третьей степени.

Решение задачи расчета координат объекта является решением геометрической задачи, представленной на фигуре 1. По теореме косинусов из треугольника со сторонами Доб, Дфр, Х дальность до объекта:

.

Дальность до объекта вычисляется как корень квадратный из суммы трех слагаемых, первое слагаемое - квадрат дальности до фронта следа, второе слагаемое - отрицательное удвоенное произведение дальности до фронта следа, расстояния от объекта до фронта следа, косинуса курсового угла с фронта следа на радиолокатор, третье слагаемое - квадрат расстояния от объекта до фронта следа.

По теореме синусов из треугольника со сторонами Доб, Дфр, Х разница пеленгов на фронт следа и на объект:

Из уравнения свойств углов:

βобфр+θ.

Тогда курсовой угол на радиолокатор относительно объекта выражается через уже известные величины:

Пеленг на объект вычисляется как сумма (в случае, при превышении пеленга на фронт следа над курсом объекта, отрицательного значения разности, где уменьшаемое - пеленг на фронт следа, вычитаемое - сумма курса объекта и 180 градусов, или в случае, при превышении курса объекта над пеленгом на фронт следа, отрицательного значения разности, где уменьшаемое - сумма пеленга на фронт следа и 180 градусов, вычитаемое - курс объекта, пеленг на объект вычисляется как разность) пеленга на фронт следа и арксинуса отношения, где числитель - произведение расстояния от объекта до фронта следа и синуса курсового угла с фронта следа на радиолокатор, знаменатель - дальность до объекта:

Краткое описание чертежей:

Фиг.1 - схема взаимного расположения радиолокатора, объекта и следа: вид сверху на морскую поверхность.

Фиг.2 - схема взаимного расположения объекта и следа: вид с лобового ракурса на объект.

Фиг.3 - схема взаимного расположения объекта и следа: вид сверху на морскую поверхность. Пространственные параметры аномалии.

Осуществление

Для осуществления способа требуется наличие «портретов» (базы данных классификационных признаков) известных сверхзвуковых низколетящих объектов: таблицы с данными величин интенсивностей ударных волн, скоростей ударных волн и расстояний от оси движения объекта до границы образованного ударной волной следа. Объектам, имеющим идентичный планер, двигатель и скорость, будет соответствовать одинаковый «портрет». Входными данными «портрета» являются различные классификационные признаки объекта, в том числе скорость движения объекта. Выводными данными «портрета» являются интенсивность и скорость ударной волны объекта.

После обнаружения радиолокатором следа объекта определяются дальность до фронта следа Дфр и пеленг на фронт следа Пфр, по местоположению фронта следа и пространственной ориентации следа определяется направление движения (курс) объекта Коб. По пеленгу на фронт следа Пфр и курсу объекта Коб определяется курсовой угол с фронта следа на радиолокатор - βфр:

Курсовой угол с фронта следа на радиолокатор вычисляется в случае, если пеленг с радиолокатора на фронт следа больше курса объекта, как модуль разности, где уменьшаемое - пеленг с радиолокатора на фронт следа, вычитаемое - сумма курса фронта следа и 180 градусов, а в противном случае как модуль разности, где уменьшаемое - сумма пеленга с радиолокатора на фронт следа и 180 градусов, вычитаемое - курс фронта следа.

Из данных радиолокационного зондирования МП методом стробирования снимаются значения измеренной ширины следа Визм, потом значения усредняются.

По перемещению радиолокационной отметки фронта следа определяется скорость движения объекта.

По скорости движения объекта и другим классификационным признакам производится классификация объекта. Из таблицы выбирается интенсивность и скорость ударной волны, соответствующие классификации объекта.

По известной длине электромагнитной волны λ излучаемой радиолокатором и углу скольжения ψ при облучении МП радиолокатором определяется Ia - минимальное значение интенсивности ударной волны, достигшей морской поверхности и вызвавшей различимую радиолокатором аномалию.

По известной длине электромагнитной волны λ и углу скольжения Ψ, выбранной по классификации интенсивности Iоб и скорости ударной волны νув, рассчитанной интенсивности Ia, измеренной скорости объекта Vоб и ширине следа вычисляется расстояние X:

Проекция на морскую поверхность расстояния от объекта до фронта следа рассчитывается как произведение скорости полета объекта и суммы квадратных корней, первый квадратный корень - разность, где уменьшаемое отношение минимального значения интенсивности ударной волны, достигшей морской поверхности и вызвавшей различимую радиолокатором аномалию, к произведению числа π, интенсивности ударной волны объекта, скорости ударной волны и корня квадратного из суммы квадратов скорости ударной волны и скорости полета объекта, а вычитаемое - это отношение квадрата произведения усредненной измеренной ширины следа и косинуса курсового угла с фронта следа на радиолокатор к произведению числа 4 и квадрата скорости ударной волны, второй квадратный корень - отношение произведения числа 2, корня квадратного из числа 2 и длины электромагнитной волны в третьей степени к сумме, где первое слагаемое - это произведение квадрата длины электромагнитной волны, ускорения свободного падения и косинуса угла скольжения электромагнитных волн, а второе слагаемое - это удвоенное произведение числа π в четвертой степени, нормированного на давление коэффициента поверхностного натяжения на границе сред воды и воздуха, а также косинуса угла скольжения в третьей степени.

Дальность до объекта вычисляется по формуле:

.

Дальность до объекта вычисляется как корень квадратный из суммы трех слагаемых, первое слагаемое - квадрат дальности до фронта следа, второе слагаемое - отрицательное удвоенное произведение дальности до фронта следа, расстояния от объекта до фронта следа, косинуса курсового угла с фронта следа на радиолокатор, третье слагаемое - квадрат расстояния от объекта до фронта следа.

Пеленг на объект вычисляется как сумма (в случае, при превышении пеленга на фронт следа над курсом объекта, отрицательного значения разности, где уменьшаемое - пеленг на фронт следа, вычитаемое - сумма курса объекта и 180 градусов, или в случае, при превышении курса объекта над пеленгом на фронт следа, отрицательного значения разности, где уменьшаемое - сумма пеленга на фронт следа и 180 градусов, вычитаемое - курс объекта, пеленг на объект вычисляется как разность) пеленга на фронт следа и арксинуса отношения, где числитель - произведение расстояния от объекта до фронта следа и синуса курсового угла с фронта следа на радиолокатор, знаменатель - дальность до объекта:

Источники информации

1. Джигимон А.Н., Стабровский В.Н., Худзик ТА. Способ определения координат сверхзвукового низколетящего объекта по следу на морской поверхности. // Патент на изобретение №2419105. Заявка №2009133863 от 09.09.09 г. Зарегистрировано в Государственном реестре изобретений РФ 20.05.11 г. Опубликовано в бюллетене №14 от 20.05.11 г.

2. Джигимон А.Н., Стабровский В.Н., Худзик Т.А. Способ определения местоположения и параметров движения низколетящего над водной поверхностью со сверхзвуковой скоростью объекта по следу на водной поверхности. // Патент на изобретение №2388012. Заявка №2009103218 от 30.01.09 г. Зарегистрировано в Государственном реестре изобретений РФ 27.04.10 г. Опубликовано в бюллетене №12 от 27.04.10 г.

3. Океанология. Физика океана. Том 2. Гидродинамика океана. - М.: Наука, 1978. - 456 с.

4. Стокер Дж. Дж. Волне на воде. Математическая теория и приложения. / Пер. с англ. /Под ред. Лаврентьева М.А. и Моисеева Н.Н. - М.: Изд-во иностранной литературы, 1959. - 620 с.

5. Ушаков И.Е., Шишкин И.Ф. Радиолокационное зондирование морской поверхности. - М.: РИЦ «Татьянин день», 1997. - 264 с.: ил.

6. Физический энциклопедический словарь. / Гл. ред. A.M.Прохоров. Ред. кол. Д.М.Алексеев, A.M.Бонч-Бруевич, А.С.Боровик-Романов и др. - М.: Сов. энциклопедия, 1984. - 944 с., ил., 2 л. цв. ил.

Способ определения координат сверхзвукового низколетящего над морской поверхностью (МП) объекта по радиолокационно наблюдаемому следу на МП, способный осуществляться как при наличии, так и при отсутствии радиолокационного отражения от самого объекта; производимый по аномалии морской поверхности (АМП), скорость перемещения фронта и другие признаки которой позволяют классифицировать ее как след низколетящего над МП объекта; осуществляемый расположенным на судне или летательном аппарате автономным радиолокатором в пределах радиогоризонта; в котором после обнаружения следа (АМП) радиолокационным способом определяются дальность до фронта следа и пеленг на фронт следа, производится измерение ширины следа способом радиолокационного стробирования по дальности; скорость движения объекта определяется по перемещению радиолокационной отметки фронта следа; курс движения объекта определяется пространственной ориентацией следа; курсовой угол с фронта следа на радиолокатор вычисляется в случае, если пеленг с радиолокатора на фронт следа больше курса объекта, как модуль разности, где уменьшаемое - пеленг с радиолокатора на фронт следа, вычитаемое - сумма курса фронта следа и 180°, а в противном случае как модуль разности, где уменьшаемое - сумма пеленга с радиолокатора на фронт следа и 180°, вычитаемое - курс фронта следа; отличающийся тем, что для определения интенсивности и скорости ударной волны объекта используется база данных классификационных признаков существующих сверхзвуковых низколетящих объектов; по скорости движения объекта и другим классификационным признакам производится классификация объекта и выбор из базы данных интенсивности и скорости ударной волны объекта; по известной длине излучаемой радиолокатором электромагнитной волны и углу скольжения при облучении морской поверхности радиолокатором определяется минимальное значение интенсивности ударной волны, достигшей морской поверхности и вызвавшей различимую радиолокатором аномалию; расстояние от объекта до фронта следа рассчитывается как произведение скорости полета объекта и суммы квадратных корней, первый квадратный корень - разность, где уменьшаемое отношение минимального значения интенсивности ударной волны, достигшей морской поверхности и вызвавшей различимую радиолокатором аномалию, к произведению числа пи, интенсивности ударной волны объекта, скорости ударной волны и корня квадратного из суммы квадратов скорости ударной волны и скорости полета объекта, а вычитаемое отношение квадрата ширины следа к произведению числа 4 и квадрата скорости ударной волны, второй квадратных корень - отношение произведения числа 2, корня квадратного из числа 2 и длины электромагнитной волны в третьей степени к сумме, где первое слагаемое это произведение квадрата длины электромагнитной волны, ускорения свободного падения и косинуса угла скольжения электромагнитных волн, а второе слагаемое это удвоенное произведение числа пи в четвертой степени, нормированного на давление коэффициента поверхностного натяжения на границе сред воды и воздуха, а также косинуса угла скольжения в третьей степени; дальность до объекта вычисляется как корень квадратный из суммы трех слагаемых, первое слагаемое - квадрат дальности до фронта следа, второе слагаемое - отрицательное удвоенное произведение дальности до фронта следа, расстояния от объекта до фронта следа, косинуса курсового угла с фронта следа на радиолокатор, третье слагаемое - квадрат расстояния от объекта до фронта следа; пеленг на объект вычисляется как сумма (в случае, при превышении пеленга на фронт следа над курсом объекта, отрицательного значения разности, где уменьшаемое - пеленг на фронт следа, вычитаемое - сумма курса объекта и 180°, или в случае при превышении курса объекта над пеленгом на фронт следа отрицательного значения разности, где уменьшаемое - сумма пеленга на фронт следа и 180°, вычитаемое - курс объекта, пеленг на объект вычисляется как разность) пеленга на фронт следа и арксинуса отношения, где числитель - произведение расстояния от объекта до фронта следа и синуса курсового угла с фронта следа на радиолокатор, знаменатель - дальность до объекта.



 

Похожие патенты:

Изобретение относится к летательным аппаратам (ЛА), совершающим полет по баллистическим и аэробаллистическим траекториям с высотой подъема не менее 20 км. .

Изобретение относится к радиолокации, в частности к методам восстановления траектории цели в бистатической радиолокации с обнаружением "на просвет". .

Изобретение относится к радиотехнике, преимущественно к радиолокации объектов, и, в частности, может быть использовано для подповерхностного зондирования внутренних органов человека и животных в процессе ультразвуковых исследований.

Изобретение относится к электронике и авионике и предназначено в основном для размещения на всех летательных аппаратах, в первую очередь истребителях, с целью скрытного определения воздушных целей, в частности - стелс-целей.

Изобретение относится к радиолокации и может быть использовано для измерения угловой координаты объектов. .

Изобретение относится к области радиолокации, в частности к обнаружению, определению местоположения и сопровождению малозаметного низколетящего над морской поверхностью со сверхзвуковой скоростью объекта.

Изобретение относится к области радиолокации, в частности к обнаружению, определению координат и сопровождению сверхзвукового малозаметного низколетящего над морской поверхностью (МП) объекта.

Изобретение относится к области навигации и может быть использовано для определения расстояний между различными объектами по измеряемым параметрам электромагнитного поля во всем частотном спектре.

Изобретение относится к области навигации и может быть использовано для определения координат подвижных объектов

Изобретение относится к радиолокационным техническим средствам распознавания класса стреляющих артиллерийских систем противника по результатам измерения текущих координат снаряда на траектории. Достигаемый технический результат - повышение достоверности распознавания наличия маневра цели и его параметров при движении цели на траектории для систем с активно-реактивным снаряжением, повышение точности определения координат точки вылета (старта) цели. Указанный результат достигается за счет введения признаков, позволяющих определить величину перегрузок, действующих на цель при движении ее по траектории. Такими признаками являются следующие параметры: скорость цели по высоте в средней точке участка наблюдения, сглаженные значения текущей координаты (высоты) цели на траектории, число измеренных координат за время наблюдения за целью, дискрет съема измеренных координат. 2 ил.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - повышение точности определения дальности до цели относительно приемной позиции при траекториях движения цели, совершающих маневр в зоне обзора бистатической радиолокационной станции, и целей, летящих под малыми углами и параллельно линии базы. Это достигается тем, что устройство для определения параметров движения цели содержит передающую позицию, состоящую из передающей антенны, первого и второго передатчиков, блок суммирования, приемную позицию, состоящую из приемной антенны, трех цепей, включающих в себя приемник, детектор и фильтр нижних частот, а также содержит блок измерения направления прихода интерференционного сигнала, блок вычисления траекторных параметров, выход которого является выходом устройства, блок разделения по частоте, синхронизатор, первый и второй формирователи импульсов, измеритель временных интервалов, многоканальный спектроанализатор, определенным образом соединенные между собой. 6 ил.

Способ обнаружения нефтяных пленок на водной поверхности относится к области радиолокации и может быть использован для радиолокационного мониторинга водной поверхности. Достигаемый технический результат - повышении дальности обнаружения нефтяной пленки радиолокатором. Указанный результат достигается за счет того, что водную поверхность облучают радиоимпульсами, при этом в районе обследуемой акватории устанавливают дополнительный пассивный радиолокационный отражатель с возможностью переотражения поступающих на него радиоимпульсов от радиолокатора и морской поверхности в сторону радиолокатора, производят накопление амплитуд принятых эхосигналов и их пересчет в значения удельной эффективной площади рассеяния для элемента пространственного разрешения, содержащего дополнительный пассивный радиолокационный отражатель, фильтрацию значений удельной эффективной площади рассеяния для учета искажений, при этом обнаружение нефтяных пленок на водной поверхности производят по превышению порогового значения величины удельной эффективной площади рассеяния. 1 з.п.ф-лы, 1 ил., 2 пр.

Изобретение относится к области радиолокации. Достигаемый технический результат - повышение точности оценки координат цели за счет реализации процедуры когерентного накопления. Указанный результат достигается за счет того, что устройство содержит передающую позицию и в удаленной от нее точке приемную позицию, при этом в передающей позиции имеются передающие антенны горизонтальной и вертикальной поляризации, входом соединенные с выходом передающего устройства, а в приемной позиции антенна состоит из приемных антенн горизонтальной и вертикальной поляризации, связанных с приемным устройством, которое содержит помимо первого и второго приемных трактов основных каналов приемный тракт дополнительного канала, блок формирования фазированных опорных напряжений, первый и второй фазовые детекторы, измеритель разности фаз, первый и второй интеграторы, выходы которых являются выходами соответствующего приемного устройства приемной позиции, и фазовращатель, соответствующим образом связанные между собой, при этом выход приемной антенны горизонтальной поляризации связан со входом приемного тракта дополнительного канала, выход приемной антенны вертикальной поляризации соединен со входами первого и второго приемных трактов основных каналов, выходы приемной позиции подключены к соответствующим входам измерителя направления прихода интерференционного сигнала, последовательно соединенных измерителя доплеровской частоты, блока экстраполяции измеряемых параметров, блока вычисления момента времени пересечения целью линии базы, блока определения поверхности положения и блока вычисления траекторных параметров, а также блока определения статистических характеристик ошибок измерения доплеровской частоты и направления прихода интерференционного сигнала, выходом связанного со входом блока конечного вычисления траекторных параметров. 1 з.п. ф-лы, 5 ил.

Изобретения относятся к области радиолокации. Достигаемый технический результат - непрерывное в течение длительного времени и скрытное определение всех координат целей в дальней зоне контроля при сокращении числа разнесенных в пространстве пассивных радиолокационных станций (ПРЛС). Указанный результат достигается тем, что в способе, основанном на измерении угловых координат целей по отраженным ими радиоизлучениям и вычислении дальности до цели с помощью ПРЛС, в качестве источника радиоизлучений выбирают радиолокационную станцию, расположенную за горизонтом (ЗРЛС), с известными ее координатами и параметрами сигналов (зондов), с постоянным или переменным периодом их излучений, облучающую контролируемую зону, определяют момент приема зонда, отраженного целью, вычисляют момент излучения зонда ЗРЛС, определяют дальности до других целей, от которых хотя бы одной из ПРЛС принят отраженный зонд, осуществляют их первичный захват и переходят к их автосопровождению с помощью этой ПРЛС, при приеме отраженного зонда устанавливают вероятное положение момента излучения зонда и вычисляют дальности до вновь обнаруженных целей, облученных этим зондом, в необходимых случаях повторно вычисляют момент излучения зонда, по его значению уточняют дальности до целей и их скорости. Заявленный способ реализуется с помощью комплекса для определения координат целей, представляющего собой многопозиционный радиолокатор, выполненный определенным образом. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретения относятся к области радиолокации. Достигаемый технический результат - измерение дальности до обнаруженной цели, находящейся на большом удалении, при сохранении скрытности работы и без затрат энергии на излучение. Указанный результат достигается тем, что в первом варианте способа определения координат целей, основанном на определении угловых координат цели по отраженному ею радиоизлучению с помощью пассивной радиолокационной станции (ПРЛС), согласно изобретению в качестве источника радиоизлучения выбирают расположенную в прямой видимости ПРЛС внешнюю радиолокационную станцию (ВРЛС) с известными ее координатами и облучающую просматриваемую зону, принимают и измеряют момент приема отраженного целью зондирующего сигнала и ее угловые координаты, а также принимают прямой зондирующий сигнал ВРЛС и вычисляют момент его излучения, на основе измеренного момента приема отраженного целью зондирующего сигнала и вычисленного момента его излучения вычисляют дальность до цели. Указанный технический результат по второму варианту достигается тем, что в способе определения координат целей, основанном на определении угловых координат цели по отраженному ею радиоизлучению с помощью ПРЛС, согласно изобретению в качестве источника радиоизлучения выбирают внешнюю радиолокационную станцию (ВРЛС) с известными ее координатами и облучающую просматриваемую зону, с помощью бортовой радиолокационной станции (БРЛС), размещенной в зоне прямой видимости ВРЛС, принимают ее прямой зондирующий сигнал, вычисляют момент его излучения и вычисленное значение в едином времени передают на n≥1 ПРЛС, с помощью которых принимают и измеряют моменты приема отраженных целями зондирующих сигналов и их угловые координаты и на основе измеренных моментов приема отраженных целями зондирующего сигнала и принятого от БРЛС значения момента его излучения вычисляют дальность до целей. Указанный технический результат достигается также тем, что комплекс для определения координат целей по первому варианту представляет собой ПРЛС, которая содержит два приемных канала (ПК) и блок вычисления координат (ВК), каждый канал содержит антенну и приемник, ПРЛС содержит также блок вычисления момента излучения зонда, блок сопровождения цели и датчик единого времени. Все перечисленные средства определенным образом соединены между собой. Указанный технический результат достигается тем, что комплекс для определения координат целей по второму варианту представляет собой ПРЛС, при этом ПРЛС содержит два ПК и блок ВК, каждый канал содержит антенну и приемник, комплекс содержит также n>1 ПРЛС и бортовую радиолокационную станцию (БРЛС), а ПРЛС также содержит блок вычисления задержки, блок сопровождения цели и датчик единого времени. Все перечисленные средства определенным образом соединены между собой, при этом БРЛС включает блок вычисления момента излучения зонда ВРЛС. 4 н. п. ф-лы, 6 ил.

Изобретение относится к вооружению и может быть использовано в системах распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций. Проводят экспериментальные стрельбы, исследуют записи отражения от снарядов для каждого калибра артиллерийских орудий противника, определяют частоты прецессии и нутации соответствующих снарядам орудий, заносят значения частот прецессии и нутации в качестве эталонных в запоминающее устройство (ЗУ) радиолокационной станции разведки огневых позиций (РСРОП), ведут разведку выпущенных снарядов с помощью РСРОП, обнаруживают и автоматически сопровождают снаряд, записывают в ЗУ РСРОП на определенном интервале времени параметров отраженных от снаряда сигналов на выходе предварительного усилителя промежуточной частоты в режиме отключенной мгновенной автоматической регулировки усиления, дополнительно проводят измерение линейной скорости снаряда на начальном участке траектории с помощью определения угловой координаты и наклонной дальности в двух последовательных моментах времени, преобразуют записанные параметры сигналов в цифровую форму, формируют спектр записанных отраженных сигналов, сравнивают выделенные значения частот прецессии и нутации с соответствующими значениями, хранящимися в базе данных ЗУ РСРОП, выявляют минимальные ошибки расхождения решения о калибре сопровождаемого снаряда, определяют калибр сопровождаемого снаряда. Изобретение позволяет повысить эффективность распознавания снаряда. 5 ил.

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике для обнаружения траектории маневрирующего объекта. Достигаемый технический результат изобретения - повышение вероятности обнаружения траектории маневрирующего объекта. Указанный результат предлагаемого изобретения достигается за счет введения ускорения в вектор измеряемых параметров сигнала, отраженного от маневрирующего объекта, а также за счет введения многоканальности по ускорению, обеспечивающей компенсацию межпериодных фазовых набегов, вызванных ускоренным движением объекта, и за счет оценки скорости изменения доплеровской составляющей. 2 ил.
Наверх