Гидробародинамическое устройство очистки внутренней поверхности напорных трубопроводов

Предложено гидробародинамическое устройство очистки внутренней поверхности напорных трубопроводов, содержащее манжету, полый шток и кавитатор-ограничитель хода. Полый шток снабжен подпружиненным стаканообразным цилиндром, который перекрывает отверстия цилиндрической рабочей камеры, являющейся продолжением полого штока и ступенеобразно превышающей его диаметр. Подпружиненный стаканообразный цилиндр, его дно и ступень рабочей камеры образуют управляющую камеру, соединенную с полостью штока и далее с полостью манжеты, а дно рабочей камеры, через переходник, соединено с кавитатором-ограничителем хода. Достигаемый технический результат - повышение эффективности и надежности работы устройства. 1 ил.

 

Изобретение относится к области очистки внутренних поверхностей напорных трубопроводов от отложений. Отложения образуются за счет осаждения частиц транспортируемого продукта и последующего прилипания их к стенке трубы. Зарастание трубы отложениями приводит к уменьшению проходного сечения трубы, снижению ее производительности, повышению энергоемкости процесса.

Известны устройства для очистки внутренних поверхностей напорных трубопроводов, использующие гидробародинамический эффект.

Устройство [1] состоит из струеформирующей манжеты, штока и центратора-кавитатора. Недостатком этого устройства является низкая эффективность очистки при встрече с твердыми карбонатными отложениями. Низкая эффективность обусловлена недостаточной кинетической энергией струй выбрасываемых манжетой и направленных на разрушение отложений.

Известно устройство, реализованное в гидробародинамическом способе очистки внутренней поверхности трубопроводов [2] - прототип.

Устройство состоит из струеформирующей манжеты, штока и кавитатора-ограничителя хода. Шток выполнен со сквозным каналом, который снабжен эластичным тором, в котором внутренний диаметр в исходном состоянии равен нулю, а при воздействии на тор повышенного расхода и давления рабочего агента, внутренний диаметр тора открывается и он пропускает через себя излишки рабочего агента. При этом увеличивается скорость вхождения рабочего агента в конусные канавки манжеты и соответственно на выходе из них, что позволяет увеличить кинетическую энергию струй, не увеличивая скорости движения устройства по трубе. Однако это устройство сложно реализовать на практике, так как сложно подобрать эластичные свойства торса и исходное давление газа в нем.

Надежность тора в абразивной среде низка, так как в трубопроводе, как правило, присутствует вместе с водой песок, окалина, галька и прочие включения.

Задачей предлагаемого изобретения является повышение эффективности и надежности работы устройства. Технический результат достигается за счет того, что полый шток устройства снабжен подпружиненным стаканообразным цилиндром, который перекрывает отверстия цилиндрической рабочей камеры, являющейся продолжением полого штока и ступенеобразно превышающей его диаметр, причем подпружиненный стаканообразный цилиндр, его дно и ступень рабочей камеры образуют управляющую камеру, соединенную с полостью штока и далее с полостью манжеты, а дно рабочей камеры, через переходник, соединено с кавитатором-ограничителем хода.

Более подробно сущность изобретения будет описана ниже.

На фиг.1 представлен схема гидробародинамического устройства очистки внутренней поверхности напорных трубопроводов.

Устройство состоит из струеформирующей манжеты 1, содержащей пружинные элементы 2, расположенные в два ряда в шахматном порядке и образующие в сопряжении с трубопроводом 3 клиновидные щели (см. схему А). Внутренняя полость манжеты покрыта эластичным элементом 4. К манжете 1 прикреплен полый шток 5, оканчивающийся рабочей камерой 6, которая ступенеобразно превышает диаметр штока 5. Камера 6 имеет отверстия 7. К дну камеры 6 прикреплен переходник 8 с кавитатором-ограничителем хода 9.

На штоке 5 установлен стаканообразный цилиндр 10, подпружиненный пружиной 11 и перекрывающий отверстия 7 рабочей камеры 6. Подпружиненный стаканообразный цилиндр 10 и ступень рабочей камеры 6 образуют управляющую камеру, которая через отверстия 12 штока 5 соединяется с полостью штока 5 и далее с полостью манжеты 1.

Рабочая камера 6 снабжена ограничителем хода 13 цилиндра 10. На фиг.1 показаны также отложения 14, уменьшающие проходное сечение трубопровода 3. Работает устройство следующим образом.

Через приемную камеру (на фиг.1 не показана) устройство заводят в трубопровод 3 с предварительно счищенной заходной частью. Далее подают рабочий агент (как правило воду) на манжету 1. При перепаде давления перед манжетой 1 и за ней, равном (0,2-0,6) МПа манжета 1 начинает движение, а в клиновидных щелях (см. схему А) вода, разгоняясь, образует гидробародинамические струи, разрушающие отложения 14.

Из баланса потоков на входе и выходе клиновидной щели можно записать: , где; V1 - скорость входа рабочего агента в щель; S1 - поперечная площадь входа в щель;

V2 - скорость выхода рабочего агента из щели;

S2 - поперечная площадь выхода из щели.

Из (1) следует, что

Пусть V1=1 м/с, a S1/S2=2, тогда V2=2 м/с.

Кинетическая энергия струи прямо пропорциональна квадрату ее скорости, то есть ; тогда Е кин 2=4.

Если V1 увеличить до 2 м/с, то V2=4 м/с, Е кин.2=16, то есть энергия с струи возрастает в 4 раза.

Таким образом, эффективность работы устройства главным образом зависит от скорости вхождения рабочего агента в клиновидную щель. Для достижения этой цели повышают расход и давление рабочего агента.

Однако при этом на манжету начинают действовать большая сила, скорость движения манжеты по трубопроводу возрастает, качество очистки стенки трубы снижается, образование струй нарушается и устройство заклинивает в сужении трубы. Возникает аварийная ситуация. Устройство извлекают из трубы и работу начинают сначала.

В предлагаемом устройстве такого не происходит. При повышении расхода и движения рабочего агента происходит следующее.

Рабочий агент в начале работы поступает в полый шток 5 и далее в рабочую камеру 6, отверстия которой закрыты стаканообразным цилиндром 10. Рабочий агент поступает также через отверстия 12 в управляющую камеру, образованную ступенью рабочей камеры 6, стаканообразным цилиндром 10 и его дном. Ограничитель хода 13, цилиндра 10, гарантирует наличие полости управляющей камеры в исходном состоянии устройства. Воздействуя на дно стаканообразного цилиндра 10, давление рабочего агента перемещает цилиндр 10 в левую сторону, сжимая пружину 11.

Отверстия 7 открываются и излишки расхода и давления рабочего агента сбрасываются наружу в область переходника 8 и кавитатора-ограничителя хода 9. При этом скорость движения устройства по трубопроводу не возрастает, перепад давлений до и после манжеты остается прежний, но за счет повышенного расхода рабочего агента возрастает скорость вхождения его в гидробародинамические клиновидные щели (см. схему А) и соответственно возрастает скорость выхода струй из этих щелей. Струи повышенной мощности разрушают крепкие (карбонатные) отложения, а кавитатор-ограничитель хода 9 создаст в струях турбулентные завихрения и кавитационные схлопывания образующихся вакуумных полостей, которые усиливают эффект разрушения отложений 14.

Таким образом, устройство позволяет достигать технический результат, то есть повысить эффективность работы устройства.

В связи с тем, что конкретная манжета может использоваться только под конкретный условный диаметр Ду трубопровода, то для работы необходимо иметь набор типо-размеров манжет.

Разработаны и используется на практике параметрический ряд манжет под Думм = 50, 65, 80, 150 и т.д.

В предлагаемом изобретении, та часть устройства, которая осуществляет сброс излишка давления и расхода может быть использована одна на нескольких типо-размерах манжет. Например, для Ду = 50, 65 и 80.

Для других размеров другая и так далее. Для этого типо-размеры манжет использующие одну общую часть сброса рабочего агснта должны иметь одинаковые присоединительные размеры.

Такая взаимозаменяемость позволяет упростить конструкцию всего устройства и параметрического ряда в целом, что также работает на достижение технического результата.

Устройство промыщленно применимо, так как может быть изготовлено в условиях механических мастерских.

Источники информации

1. Патент России №2009729, В08В 9/04 C1 от 24.04.1992 «Гидробародинамическое устройство очистки внутренней поверхности трубопроводов».

2. Патент России №2055652 С1, В08В 9/04 от 12.03.92 «Гидробародинамический способ очистки внутренней поверхности трубопроводов» - прототип.

Гидробародинамическое устройство очистки внутренней поверхности напорных трубопроводов, содержащее манжету, полый шток, кавитатор-ограничитель хода, отличающееся тем, что полый шток снабжен подпружиненным стаканообразным цилиндром, который перекрывает отверстия цилиндрической рабочей камеры, являющейся продолжением полого штока и ступенеобразно превышающей его диаметр, причем подпружиненный стаканообразный цилиндр, его дно и ступень рабочей камеры образуют управляющую камеру, соединенную с полостью штока и далее с полостью манжеты, а дно рабочей камеры через переходник соединено с кавитатором-ограничителем хода.



 

Похожие патенты:

Изобретение относится к нефтяной, газовой, химической отрасли, а также к водохозяйственному комплексу, включая и коммунальное хозяйство. .

Изобретение относится к области очистки внутренних поверхностей напорных трубопроводов от отложений. .

Изобретение относится к области очистки внутренних поверхностей безнапорных трубопроводов от отложений. .

Изобретение относится к установкам и устройствам для очистки змеевиков печных труб от отложений кокса и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к области очистки внутренней поверхности труб. .

Изобретение относится к области очистки и касается аппарата для удаления остаточного бетона из цилиндрических контейнеров для готового перемешиваемого бетона. .

Изобретение относится к трубопроводному транспорту, предназначено для очистки внутренней поверхности трубопроводов без остановки перекачки. .

Изобретение относится к нефтепереработке и может быть использовано для очистки змеевика печи и трансферного трубопровода от отложений кокса на установках замедленного коксования.

Изобретение относится к области теплоэнергетики и водоснабжения, предназначено для устранения отложений внутри труб и может быть использовано в тех отраслях народного хозяйства, которые эксплуатируют трубопроводы.

Изобретение относится к области очистки трубопроводов и касается способа и системы очистки трубы. .

Изобретение относится к области очистки внутренних поверхностей напорных трубопроводов от отложений

Изобретение относится к трубопроводному транспорту и может быть использовано для нанесения защитного покрытия на внутреннюю поверхность трубопровода

Изобретение относится к водоотводным и дренажным системам и применяется для их очистки. Роторный насадок содержит опорные части и третью часть, которая вращается. Для вращения применяется винтовой насос, соединенный с внутренней поверхностью шестеренчатой передачей, и третья часть имеет снаружи винтовую эластичную нарезку. Опорные части имеют снаружи продольные эластичные пластины. Центральная подводящая труба имеет дулеобразные отверстия в начале и в конце третьей части, которые расположены зеркально по поверхности трубы. Повышается качество работы роторного насадка. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к нефтедобывающей промышленности, в частности к способам очистки внутренней поверхности труб. При осуществлении способа к трубе присоединяют шаблон, соединенный с устройством, включающим фрезу, щетку, крыльчатку для обеспечения вращения фрезы и щетки, тросом, длина которого превышает длину трубы. Производят отсоединение троса с устройством от шаблона, присоединяют трос с устройством к натяжному барабану. Протаскивание устройства вдоль трубы производят с одновременной подачей воздуха во внутреннюю полость трубы. Повышается эффективность очистки. 2 н.п. ф-лы, 2 ил.
Изобретение относится к нефтяной промышленности и может найти применение при ремонте нефтепромыслового трубопровода. При ремонте нефтепромыслового трубопровода раскапывают трубопровод на длину до 15 м в начале трубопровода, обрезают трубопровод, конец трубопровода смещают в сторону относительно оси трубопровода на величину до 0,4 м, помещают в трубопровод компоновку в виде винтового забойного двигателя с долотом на насосно-компрессорной трубе, прокачивают по насосно-компрессорной трубе воду с расходом от 0,2 до 0,5 м3/мин под давлением 3-6 МПа, подают трубу с усилием на соленые отложения от 1,5 до 3 т и производят разбуривание соленых отложений, по мере продвижения компоновки внутри трубопровода наращивают колонну насосно-компрессорных труб, разбуривают трубопровод на прямых участках с отклонением от оси до 15° на 10 м. Предложенный способ обеспечивает разрушения в нефтепромысловом трубопроводе соляных отложений сульфата бария. 1 табл.

Изобретение относится к устройству и способу контроля очистки трубопровода при внутритрубной диагностике, и может быть использовано для определения степени загрязненности трубопровода и его готовности к пропуску внутритрубного ультразвукового дефектоскопа. Устройство состоит из корпуса, представляющего собой штангу, к которой прикреплено несколько фланцев. При этом к передним двум фланцам крепятся бампер и грузы, а к третьему фланцу крепятся полиуретановые конические полозья в сборе с цилиндрическими полозьями. Полиуретановые конические и цилиндрические полозья являются носителями имитаторов ультразвуковых датчиков, а полиуретановые конические полозья выполнены в виде упругих несущих элементов, к которым крепятся полиуретановые цилиндрические полозья, скрепленные между собой посредством листовых пружин и болтов с шайбами. Способ заключается в том, что устройство контроля очистки пропускают в трубопроводе, при этом в движение устройство контроля очистки трубопровода приводится посредством манжет потоком перекачиваемого продукта. В процессе пропуска устройства по участку трубопровода происходит осаждение твердых фракций парафина и попавших в нефть частиц грунта на поверхность имитаторов ультразвуковых датчиков, а после извлечения устройства из камеры приема производится визуальный осмотр и подсчет общего количества закрытых парафином имитаторов ультразвуковых датчиков и количества групп, состоящих из трех и более смежных имитаторов ультразвуковых датчиков, закрытых парафином. Достигаемый при этом технический результат заключается в повышении надежности и достоверности обнаружения загрязнений и, как следствие, повышение достоверности исследования трубопровода для избегания повреждения ультразвуковой диагностической аппаратуры. 2 н., 4 з.п. ф-лы, 2 ил.

Изобретение относится к строительству и эксплуатации дымовых труб и может быть использовано для очистки и нанесения антикоррозийного покрытия на внутренние поверхности труб. Способ нанесения антикоррозийного покрытия на внутреннюю поверхность дымовой трубы заключается в механическом отделении отложений от поверхности трубы и удалении отложений из зоны очистки. Узел очистки запасовывают в дымовую трубу с помощью крана, центруют его в дымовой трубе, обеспечивают его движение вверх-вниз автокраном со скоростью 0,1 м/с, производят очистку дымовой трубы вращательным движением металлических щеток. После очистки внутренней поверхности дымовой трубы на устройство устанавливают узел покраски и распыляют раствор через форсунки, нанося на внутреннюю поверхность дымовой трубы антикоррозийное покрытие. Изобретение обеспечивает повышение качества антикоррозионного покрытия внутренней поверхности дымовой трубы, за счет улучшения очистки, и увеличение ее долголетия. 5 з.п. ф-лы, 3 ил.

Изобретение относится к эксплуатации трубопроводных систем, в частности к очистке внутренней поверхности трубопроводов от асфальтеносмолопарафиновых отложений. Устройство включает корпус, выполненный в виде пустотелой вытянутой полусферы из эластичного материала, с тыльной части корпуса выполнен углубленный вырез. По оси вращения устройства установлена сквозная металлическая трубка. С наружной стороны корпуса на металлическую трубку навинчена фигурная гайка, на которую насажены фторопластовые шайбы и фторопластовая манжета. Поверх манжеты закреплены фторопластовая втулка и полая лопасть, зафиксированные гайкой. Каналы лопасти связаны с внутренней полостью трубки через отверстия, выполненные по всему диаметру трубки. Фторопластовые манжета и втулка имеют отверстия, совмещенные с отверстиями в трубке. На противоположных сторонах лопасти расположены отверстия. Техническим результатом является повышение качества очистки внутренней поверхности трубопровода, повышение надежности работы устройства, упрощение конструкции устройства и процесса очистки. 2 ил.

Изобретение относится к строительству и эксплуатации дымовых труб и может быть использовано для очистки и нанесения антикоррозийного покрытия на внутренние поверхности труб. Очистка и нанесение покрытия производят последовательным многократным проходом сверху вниз и снизу вверх узла очистки и узла покраски (от 6 до 30 проходов). Применение предложенного устройства позволит повысить качество антикоррозионного покрытия за счет улучшения очистки внутренней поверхности дымовой трубы, увеличить срок эксплуатации трубы на 45% без изменения ее свойств и снизить экономические затраты на ее эксплуатацию. 3 ил.
Наверх