Состав для снижения вязкости нефти в условиях низкотемпературных месторождений

Изобретение относится к нефтедобывающей промышленности, а именно к составу для снижения вязкости нефти и повышения нефтеотдачи пластов в условиях низкотемпературного нефтяного пласта с применением микроорганизмов. Состав для снижения вязкости нефти в условиях низкотемпературных месторождений на основе нефтевытесняющей композиции, содержащей аммиачную селитру, поверхностно-активное вещество - ПАВ, карбамид и воду, где в композицию добавляют водный экстракт уробактерий, содержащий 800-840 млн кл./мл, полученный при постоянном перемешивании в течение 120 минут массы кизяков в воде в соотношении 10:100 соответственно, при следующем соотношении компонентов, г/л: аммиачная селитра 14-142, неионогенное ПАВ - АФ9-12 или NP-40 или NP-50 4,8-48, анионактивное ПАВ - волгонат или сульфонол 2,4-24, карбамид 28,6-286, указанный водный экстракт уробактерий 20-50 мл/л, вода остальное до 1 л. Технический результат - повышение эффективности нефтеотдачи высоковязкой нефти в условиях нефтяной залежи высоковязкой нефти с низкой пластовой температурой (+10÷+50°С), снижение затрат при исключении паротеплового воздействия. 21 пр., 4 табл., 3 ил.

 

Изобретение относится к нефтедобывающей промышленности, а именно к составу для снижения вязкости нефти и повышения нефтеотдачи в условиях низкотемпературного нефтяного пласта с применением уреазной группы микроорганизмов.

В настоящее время добыча вязкой нефти на месторождениях с низкой пластовой температурой осуществляется, как правило, с применением паротепловых методов или их сочетанием с физико-химическими методами. Так, на пермо-карбоновой залежи высоковязкой нефти Усинского месторождения (республика Коми) осуществляется площадная закачка пара в пласт или пароциклическое воздействие, при этом в пласт под давлением закачивается пар при температуре 300-350°C, что экономически затратно, поскольку связано с установкой паротепловых генераторов.

Известен состав для повышения нефтеотдачи пластов на поздней стадии разработки с применением микроорганизмов (патент РФ №2180396). Состав для повышения нефтеотдачи в качестве источника микроорганизмов содержит активный ил, в качестве питательных веществ, стимулирующих рост и активность микробных клеток, - кубовые остатки производства синтетического глицерина, дополнительно содержит полидиметилдиаллиламмонийхлорид. Указанный состав обладает биохимической активностью с выделением метана и CO2, что способствует снижению вязкости нефти и повышению нефтеотдачи. Применение состава для увеличения нефтеотдачи низкотемпературных месторождений высоковязкой нефти не предусмотрено.

Известен способ добычи высоковязкой нефти, включающий введение в пласт вытесняющего агента и разжижающего состава (патент РФ №2195549). В качестве разжижающего состава используют углеводородокисляющие бактерии с питательными солями в водном растворе. Закачку разжижающего состава производят циклически.

Данный способ недостаточно эффективен вследствие того, что продуктами метаболизма углеводородокисляющих бактерий являются соединения (альдегиды, кетоны, биоПАВ, биополимеры), способствующие десорбции нефти с пористой породы пласта. В этих условиях выделение газообразных продуктов минимально и не способствует снижению вязкости нефти.

Известен микробиологический способ увеличения нефтеотдачи пластов с применением штамма бактерий Erwinia species с высокой деструктивной активностью при контакте с углеводородами нефти, растительным сырьем и отходами животноводства (патент РФ №2103359). Штамм Erwinia species выделен из нефтеносной породы и селекционирован в процессах переработки навоза, птичьего помета в анаэробных и аэробных условиях. Данный штамм способен с высокой скоростью разлагать нефть и нефтепродукты, органические субстраты в растительном сырье и отходах животноводства в аэробных и анаэробных условиях с выделением газообразных продуктов. Недостатком предлагаемого способа является сложный и дорогостоящий процесс селекционирования и накопления биомассы для технологического процесса. Штамм в большей степени селекционирован для разложения органических субстратов в растительном сырье и отходах животноводства. В процессе биодеструкции углеводородов нефти данным штаммом, выделение газообразных продуктов незначительно.

Известен способ повышения нефтеотдачи при введении в пласт популяции аэробных бактерий (патент WO №9213172). Вода, закачиваемая в пласт под давлением, содержит растворенный кислород и минеральные питательные вещества. Микроорганизмы адаптируются и размножаются, используя нефть в качестве основного источника углерода, растворенный в воде кислород - в качестве основного источника кислорода. При биоокислении углеводородов нефти образуются продукты метаболизма, способствующие десорбции нефти с пористой породы пласта. Данный способ технологичен в условиях залежи легкой нефти.

Известен микробиологический способ повышения извлечения углеводородного сырья (патент GB №2450502). По этому способу в нефтяной пласт вводят необходимое количество биопрепарата, содержащего микроорганизмы, активно утилизирующие углеводородное сырье с образованием продуктов метаболизма, способствующих вытеснению нефти. Данный способ повышения извлечения углеводородного сырья эффективен в течение короткого промежутка времени, поскольку жизнедеятельность микрофлоры не поддерживается введением стимулирующих питательных субстратов. Его применение рассчитано для месторождений легкой нефти.

Известен ферментативный способ снижения вязкости нефти (патент US №5529930). Предлагается способ снижения вязкости нефтяных жидкостей (тяжелых нефтей и битумов) с применением биокатализатора, включающего микроорганизмы Rhodococcus rhodochrous ATCC No.53968 и их энзимы. Благодаря действию биокатализатора разрушаются связи углерод - сера в гетероциклах и образуются новые соединения, способствующие снижению вязкости нефти. Биокаталитический способ снижения вязкости нефти эффективен для нефтей с высокой концентрацией серусодержащих соединений. Спектр действия биотехнологии, основанной на использовании одного штамма, ограничен.

Более близким по составу к предлагаемому изобретению является состав для повышения нефтеотдачи пластов (патент РФ №2361074), содержащий следующие компоненты, мас.%: неионогенное поверхностно-активное вещество 1,0-2,0; ионогенное поверхностно-активное вещество 0,5-1,0; аммиачная селитра 8,0-20,0; аммоний роданистый 0.1-0.5; карбамид 15,0-40,0; вода остальное. Способ разработки залежей высоковязких нефтей путем паротеплового воздействия включает закачку чередующимися оторочками пара и состава для повышения нефтеотдачи, содержащего карбамид, который под действием температуры разлагается с выделением углекислого газа, снижающего вязкость нефти. К основным недостаткам состава следует отнести невозможность его применения для низкотемпературных месторождений вязкой нефти без паротеплового воздействия.

Задачей настоящего изобретения является повышение эффективности нефтеотдачи высоковязкой нефти в условиях нефтяной залежи с низкой пластовой температурой (+10÷+50°C), снижение затрат при исключении паротеплового воздействия за счет снижения вязкости нефти при введении в нефтяной пласт экологически безопасного экстракта уробактерий с высокой уреазной активностью с целью его ферментативного гидролиза, одновременно с раствором нефтевытесняющей композиции, содержащей карбамид. Для снижения вязкости нефти и увеличения нефтеотдачи низкотемпературных (20-40°C) залежей вязких нефтей предложено одновременное введение в пласт раствора нефтевытесняющей композиции ПАВ на основе карбамида и фермента, гидролизующего карбамид без теплового воздействия, или экстракта уробактерий, продуцирующих этот фермент. Уробактерии гидролизуют карбамид до аммиака и углекислого газа, суммарная реакция гидролиза: CO(NH2)2+H2O=CO2+2NH3. Эта реакция не имеет энергетического значения и осуществляется ферментом бактерий - уреазой. В процессе ферментативного гидролиза карбамида непосредственно в пласте генерируется аммиачная буферная система и углекислый газ (CO2). Углекислый газ растворяется, в основном, в нефти и снижает ее вязкость без применения теплового воздействия, что способствует лучшему вытеснению ее из пласта. Аммиачная буферная система обеспечивает высокие нефтевытесняющие свойства поверхностно-активных веществ (ПАВ), входящих в состав композиции.

В состав композиции входит карбамид, аммиачная селитра и смесь взаимозаменяемых неионогенного (НПАВ) и анионактивного (АПАВ) в соотношении 2:1. В качестве АПАВ применяли волгонат или сульфонол, НПАВ - неонол АФ 9-12 или NP-40, или NP-50 с различной степенью оксиэтилирования общей формулы RArO(CH2CH2O)nH, где Ar - бензольное кольцо, R - длинный углеводородный радикал C9), n - среднее число оксиэтильных групп в молекуле НПАВ (степень оксиэтилирования), структурная формула:

- НПАВ производства РФ неонол АФ 9-12 - оксиэтилированные изононилфенолы на основе триммеров пропилена со степенью оксиэтилирования 12;

- НПАВ производства КНР - NP-40, NP-50 - оксиэтилированные изононилфенолы со степенью оксиэтилирования 40, 50, соответственно.

- АПАВ производства РФ волгонат - алкилсульфонат натрия, химическая формула R-SO2ONa с длиной цепи алкильного радикала C11-C18, полученного из н-парафинов.

- АПАВ производства РФ сульфонол - натриевая соль алкилбензолсульфокислоты, химическая формула RC6H4SO3Na.

Технический результат достигается тем, что состав для повышения нефтеотдачи пластов, содержащий карбамид, аммиачную селитру, смесь НПАВ - АФ 9-12, или NP-40, или NP-50 и АПАВ - волгонат или сульфонол и воду, дополнительно содержит экстракт уробактерий, содержащий 800-840 млн кл./мл, полученный при постоянном перемешивании в течение 120 минут массы кизяков в воде в соотношении 10:100 соответственно при следующем соотношении компонентов, г/л:

1. Аммиачная селитра 14-142
2. Неионогенное ПАВ (АФ9-12, или NP-40, или NP-50) 4.8-48
3. Анионактивное ПАВ (волгонат или сульфанол) 2.4-24
4. Карбамид 28.6-286
5. Вода до 1000 мл
6. Водный экстракт уробактерий, содержащий
800-840 млн кл./мл, полученный при постоянном
перемешивании в течение 120 минут в соотношении
кизяк:вода 10:100 20-50 мл/л

Водный экстракт уробактерий для гидролиза карбамида получают из отходов жизнедеятельности сельскохозяйственных животных (кизяки, навоз) при разной концентрации массы кизяков (3, 6 и 10%) в воде и времени механического перемешивания (30, 60 и 120 мин). Величина pH исходного раствора - 6.4. В процессе гидролиза карбамида, который в небольшом количестве содержится в кизяках, pH экстракта в первые сутки увеличивается от 6.4 до 8.1. Максимальная величина pH на 30 сутки составляет 8.3 при концентрации кизяка 10% и времени перемешивания - 120 мин (таблица 1).

Как следует из таблицы 1, численность уробактерий в экстракте зависит от массы вносимого кизяка и, в большей степени, от времени перемешивания. Максимальная численность микроорганизмов 800-840 млн кл./см3 получена при соотношении кизяк: вода 10:100, времени перемешивания - 120 мин.

При одновременном введении в нефтяной пласт экстракта уробактерий и нефтевытесняющей композиции, содержащей ПАВ и карбамид, непосредственно в пласте в результате действия уреазы, продуцируемой уробактериями, генерируется углекислый газ CO2 и аммиак. Растворяясь в нефти, CO2 снижает ее вязкость, что способствует вытеснению нефти из пласта. Аммиак, растворяясь в воде, образует аммиачную буферную систему с повышением pH до 8.4-9.6 ед., что увеличивает моющие свойства композиции и также способствует вытеснению нефти из пласта. Таким образом, увеличение нефтеотдачи вязкой нефти низкотемпературной залежи достигается за счет двух эффектов: снижения вязкости нефти и увеличения моющих свойств нефтевытесняющей композиции.

Ферментативный гидролиз карбамида группой уробактерий с выделением аммиака и углекислого газа является ключевым процессом снижения вязкости нефти в условиях нефтяной залежи с низкой пластовой температурой (10÷50°C).

Примеры конкретного выполнения

Пример 1. Гидролиз карбамида (286 г/л) проводят при 30°C в составе 50%-ного раствора композиции, содержащей взаимозаменяемые АПАВ (волгонат) и НПАВ (АФ 9-12) и добавлении 20 мл/л водного экстракта уробактерий, содержащего 800 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100. Состав 50%-ного раствора нефтевытесняющей композиции, г/л: НПАВ (АФ 9-12, или NP-40, или NP-50) - 48, АПАВ (волгонат или сульфанол) - 24, аммиачная селитра - 142, карбамид - 286, вода - 500. Результаты приведены в таблице 2.

Пример 2. Гидролиз карбамида (286 г/л) проводят при 30°C в составе 50%-ного раствора композиции, содержащей в качестве АПАВ (сульфанол) - 24 г/л, НПАВ (АФ 9-12) - 48 г/л при добавлении 50 мл/л водного экстракта уробактерий, содержащего 820 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 1.

Пример 3. Гидролиз карбамида проводят при 30°C в составе 50%-ного раствора композиции, содержащей АПАВ (сульфанол) - 24 г/л, НПАВ ((NP-40) - 48 г/л при добавлении 40 мл/л водного экстракта уробактерий, содержащего 830 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 1.

Пример 4. Гидролиз карбамида проводят при 30°C в составе 50%-ного раствора композиции, содержащей взаимозаменяемые АПАВ (волгонат) - 24 г/л, НПАВ ((NP-50) - 48 г/л при добавлении 30 мл/л водного экстракта уробактерий, содержащего 840 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 1.

Пример 5. Для проведения следующих экспериментов композицию разбавляют в 2 раза. Гидролиз карбамида проводят при 30°C в составе 25%-ного раствора композиции, содержащей, г/л: карбамида - 143, аммиачной селитры - 71, взаимозаменяемые АПАВ (волгонат) - 12, НПАВ (АФ 9-12) - 24 при добавлении 20 мл/л водного экстракта уробактерий, содержащего 800 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100. Результаты приведены в таблице 2.

Примеры 6. Гидролиз карбамида (143 г/л) проводят в составе 25%-ного раствора композиции, содержащей АПАВ - волгонат, НПАВ - NP-40 при добавлении 30 мл/л водного экстракта уробактерий, содержащего 820 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 при 30°C (Таблица 2). Полученные результаты аналогичны данным примера 5.

Пример 7. Гидролиз карбамида (143 г/л) проводят в составе 25%-ного раствора композиции содержащей в качестве АПАВ - сульфанол и НПАВ - АФ 9-12 при добавлении 50 мл/л водного экстракта уробактерий, содержащего 840 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100. Эксперимент проводят при 30°C (Таблица 2). Полученные результаты аналогичны данным примера 5.

Пример 8. Гидролиз карбамида (143 г/л) проводят в составе 25%-ного раствора композиции с взаимозаменяемыми АПАВ - сульфанол и НПАВ - NP-50 при добавлении 40 мл/л водного экстракта уробактерий, содержащего 830 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100. Эксперимент проводят при 30°C (Таблица 2). Полученные результаты аналогичны данным примера 5.

Пример 9. Для проведения следующих экспериментов 50%-ный раствор композиции разбавляют в 5 раз. Гидролиз карбамида проводят в составе 10%-ного раствора композиции, содержащей, г/л: карбамид - 57.2, аммиачную селитру 28.4, АПАВ (волгонат) - 4.8 и НПАВ (АФ 9-12) - 9.6 при добавлении 20 мл/л водного экстракта уробактерий, содержащего 840 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100. Результаты приведены в таблице 2. Как следует из данных таблицы 2, повышение pH за счет гидролиза карбамида отмечено уже через 2 часа, к 20-ым суткам значение pH достигает максимальной величины 9.6.

Пример 10. Гидролиз карбамида (57.2 г/л) проводят в составе 10%-ного раствора композиции, содержащей взаимозаменяемые АПАВ (волгонат) и НПАВ (NP-40) в соотношении 1:2 при добавлении 50 мл/л водного экстракта уробактерий, содержащего 830 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 9.

Пример 11. Гидролиз карбамида (57.2 г/л) проводят в составе 10%-ного раствора композиции, содержащей в качестве взаимозаменяемых АПАВ (сульфонол) и НПАВ (АФ 9-12) при добавлении 30 мл/л водного экстракта уробактерий, содержащего 800 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 9.

Пример 12. Гидролиз карбамида (57.2 г/л) проводят в составе 10%-ного раствора композиции, содержащей взаимозаменяемые АПАВ (сульфонол) и НПАВ (NP-50) при добавлении 40 мл/л водного экстракта уробактерий, содержащего 820 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 9.

Пример 13. Для проведения следующих экспериментов 50%-ный раствор композиции разбавляют в 10 раз. Гидролиз карбамида проводят в составе 5%-ного раствора композиции, содержащей г/л: карбамид - 28.6, аммиачную селитру - 14.2, взаимозаменяемых АПАВ (волгонат) - 2.4 и НПАВ (АФ 9-12) - 4.8 при добавлении 20 мл/л водного экстракта уробактерий, содержащего 840 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100. Результаты приведены в таблице 2.

Пример 14. Гидролиз карбамида (28.6 г/л) проводят в составе 5%-ного раствора композиции, содержащего АПАВ (волгонат) и НПАВ (NP-40) при добавлении 50 мл/л водного экстракта уробактерий, содержащего 800 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 13.

Пример 15. Гидролиз карбамида (28.6 г/л) проводят в составе 5%-ного раствора композиции, содержащего АПАВ (сульфонол) и НПАВ (АФ 9-12) при добавлении 30 мл/л водного экстракта уробактерий, содержащего 820 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 13.

Пример 16. Гидролиз карбамида (28.6 г/л) проводят в составе 5%-ного раствора композиции, содержащего АПАВ (сульфонол) и НПАВ (NP-50) при добавлении 40 мл/л водного экстракта уробактерий, содержащего 830 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 (Таблица 2). Полученные результаты аналогичны данным примера 13.

Пример 17. Более подробно параметры ферментативного гидролиза карбамида в составе 10%-ного раствора нефтевытесняющей композиции, проведенного в процессе термостатирования в течение 30 суток при 30°C с добавлением 50 мл/л экстракта уробактерий, содержащего 800-840 млн кл./мл, полученного при соотношении кизяк: вода 10:100, представлены в таблице 3.

Состав 10%-ного раствора композиции, г/л: НПАВ (АФ 9-12) - 9.6, АПАВ (волгонат) - 4.8, аммиачная селитра - 28.4, карбамид - 57.2, вода - 900.

Из данных таблицы следует, что культивирование уробактерий в растворе композиции, содержащей 57.2 г карбамида, при 30°C сопровождается увеличением численности уробактерий, активной утилизацией (99.9%) карбамида, накоплением ионов аммония и CO2, повышением pH среды до 9.6 ед. на 4-е сутки (таблица 3).

Исследование влияния продуктов ферментативного гидролиза карбамида на изменение вязкости нефтей низкотемпературных месторождений Тамсагбулаг (Монголия) и Усинского (Россия) проводили методом вибрационной вискозиметрии с использованием вибрационного вискозиметра «Реокинетика» с камертонным датчиком. Исследуемые вязкие нефти представляют собой коллоидно-дисперсную систему с заметно выраженными неньютоновскими свойствами, которые ослабевают после контакта с уробактериями в растворе композиции.

Пример 18. Влияние продуктов ферментативного гидролиза карбамида на вязкость нефти месторождения Тамсагбулаг, Монголия исследуют в процессе термостатирования нефти в контакте с экстрактом уробактерий, добавленных в 10%-ный раствор нефтевытесняющей композиции, содержащей, г/л: карбамида - 57.2, аммиачной селитры - 28.4, АПАВ (волгонат) - 4.8 и НПАВ (АФ 9-12) - 9.6, pH - 6.4. Для этого в термостатируемую ячейку вносят 100 мл 10%-ного раствора композиции, добавляют 50 мл/л экстракта уробактерий, содержащего 830 млн кл./мл, полученного при перемешивании 120 мин в соотношении кизяк:вода 10:100 и 10 мл исследуемой нефти. Термостатирование проводят в течение 60 суток при температуре 40°C, близкой к пластовой. Вязкость нефти снижается после термостатирования в 1.5 раза. Результаты исследования приведены в таблице 4.

Пример 19. Влияние продуктов ферментативного гидролиза карбамида на вязкость нефти месторождения Тамсагбулаг, Монголия исследуют в процессе термостатирования нефти в контакте с экстрактом уробактерий, добавленных в 50%-ный раствор нефтевытесняющей композиции, содержащей, г/л: карбамида - 286, аммиачной селитры - 142, АПАВ (сульфанол) - 24 и НПАВ (NP-40) - 48. Для этого в термостатируемую ячейку вносят 100 мл 50%-ного раствора композиции, добавляют 30 мл/л экстракта уробактерий, содержащего 800 млн кл./мл, полученного при соотношении кизяк:вода 10:100 и перемешивании 120 мин и 10 мл исследуемой нефти. Термостатирование проводят в течение 60 суток при температуре 40°C, близкой к пластовой. Вязкость нефти снижается после термостатирования в 1.3 раза. Результаты исследования приведены в таблице 4.

Пример 20. Влияние продуктов ферментативного гидролиза карбамида на вязкость нефти Усинского месторождения исследуют в процессе термостатирования нефти в контакте с экстрактом уробактерий, добавленных в 25%-ный раствор нефтевытесняющей композиции, содержащей карбамида - 143, аммиачной селитры - 71, АПАВ (волгонат) - 12 и НПАВ (NP-50) - 24 г/л. Для этого в термостатируемую ячейку вносят 100 мл 25%-ного раствора композиции, добавляют 40 мл/л экстракта уробактерий, содержащего 820 млн кл./мл, полученного при перемешивании 120 мин кизяк:вода в соотношении 10:100 и 10 мл нефти. Термостатирование проводят в течение 60 суток при температуре 40°C, близкой к пластовой. Вязкость нефти снижается после термостатирования в 1.6 раза. Результаты исследования приведены в таблице 4.

Пример 21. Влияние продуктов ферментативного гидролиза карбамида на вязкость нефти Усинского месторождения исследуют в процессе термостатирования нефти в контакте с экстрактом уробактерий, добавленных в 5%-ный раствор нефтевытесняющей композиции, содержащей карбамида - 28.6, аммиачной селитры - 12.4, АПАВ (сульфанол) - 2.4 и НПАВ (АФ 9-12) - 4.8 г/л. Для этого в термостатируемую ячейку вносят 100 мл 5%-ного раствора композиции, добавляют 20 мл/л экстракта уробактерий, содержащего 840 млн кл./мл, полученного при соотношении кизяк:вода 10:100 и перемешивании 120 мин и 10 мл исследуемой нефти. Термостатирование проводят в течение 60 суток при температуре 40°C, близкой к пластовой. Вязкость нефти снижается после термостатирования в 1.8 раза. Результаты исследования приведены в таблице 4.

Таким образом, предлагаемое изобретение позволяет снизить вязкость нефти в 1.3-1.8 раз без применения паротеплового воздействия за счет продуктов гидролиза карбамида при введении в нефтяной пласт экологически безопасного экстракта уробактерий с высокой уреазной активностью одновременно с нефтевытесняющей композицией, содержащей ПАВ и карбамид.

Таблица 1
Условия получения водного экстракта уробактерий из кизяков
№ пробы Концентрация кизяка в воде, % Изменение pH в течение опыта Число экстрагированных уробактерий, млн кл./мл
1 сут 10 сут 30 сут
Время перемешивания 30 минут
1 3 7.7 7.9 7.9 120-200
2 6 7.7 8.0 8.0 200-250
3 10 7.8 8.0 8.1 300-360
Время перемешивания 60 минут
4 3 8.0 8.2 8.2 380-420
5 6 7.9 8.1 8.1 450-480
6 10 8.1 8.2 8.2 480-520
Время перемешивания 120 минут
1 3 8.0 8.1 8.2 700-730
8 6 7.7 8.2 8.2 750-800
9 10 8.1 8.2 8.3 800-840
Таблица 2
Гидролиз карбамида в составе нефтевытесняющих композиций разной концентрации, содержащих разные ПАВ при добавлении экстракта уробактерий
При-
мер
Состав Концентрация компонен-
тов, г/л
Число клеток в экстракте, млн кл./мл Объем экстракта, мл Изменение рН в процессе гидролиза
Исх. 2 часа 1 сут 5 сут 10 сут 20 сут
50%-ный раствор композиции
1 Карбамид 286
Аммиачная селитра 142
АПАВ (волгонат) 24
НПАВ (АФ 9-12) 48 6.4 7.6 7.9 8.0 8.2 8.4
Вода, мл 500
Водный экстракт уробактерий (кизяк:вода 10:100) 800 20
2 Карбамид 286
Аммиачная селитра 142
АПАВ (сульфонол) 24
НПАВ (АФ 9-12) 48 6.4 7.6 7.9 8.0 8.2 8.6
Вода, мл 500
Водный экстракт уробактерий (кизяк:вода 10:100) 820 50
3 Карбамид 286 6.4 7.6 7.9 8.0 8.2 8.8
аммиачная селитра 142
АПАВ (сульфонол) 24
НПАВ (NP-40) 48
Вода, мл 500
Водный экстракт уробактерий (кизяк:вода 10:100) 830 40
4 Карбамид 286
Аммиачная селитра 142
АПАВ (волгонат) 24
НПАВ (NP-50) 48 6.4 7.6 7.9 8.0 8.2 8.6
Вода, мл 500
Водный экстракт уробактерий (кизяк:вода 10:100) 840 30
Продолжение таблицы 2
При-
мер
Состав Концентрация компонентов, г/л Число клеток в экстракте, млн кл./мл Объем экстракта, мл Изменение рН в процессе гидролиза
Исх. 2 часа 1 сут 5 сут 10 сут 20 сут
25%-ный раствор композиции
5 Карбамид 143
Аммиачная селитра 71
АПАВ (волгонат) 12
НПАВ (АФ 9-12) 24 6.4 7.6 7.9 8.0 8.2 8.8
Вода, мл 750
Водный экстракт уробактерий кизяк:вода 10:100) 800 20
6 Карбамид 143
Аммиачная селитра 71
АПАВ (волгонат) 12
НПАВ (NP-40) 24 6.4 7.6 7.9 8.0 8.2 8.8
Вода, мл 750
Водный экстракт уробактерий кизяк:вода 10:100) 820 30
7 Карбамид 143 6.4 7.6 7.9 8.0 8.2 8.4
Аммиачная селитра 71
АПАВ (сульфанол) 12
НПАВ (АФ 9-12) 24
Вода, мл 750
Водный
экстракт уробактерий 840 50
кизяк:вода 10:100)
8 Карбамид 143
Аммиачная селитра 71
АПАВ 12
(сульфонол) 6.4 7.6 7.9 8.0 8.2 8.6
НПАВ (NP-50) 24
Вода, мл 750
Водный экстракт уробактерий (кизяк: вода 10:100) 830 40
Продолжение таблицы 2
При-
мер
Состав Концентра-
ция компонен-
тов, г/л
Число клеток в экстракте, млн кл./мл Объем экстракта, мл Изменение pH в процессе гидролиза
Исх. 2 часа 1 сут 5 сут 10 сут 20 сут
10%-ный раствор композиции
9 Карбамид 57.2
Аммиачная селитра 28.4
АПАВ (волгонат) 4.8
НПАВ (АФ 9-12) 9.6 6.4 9.0 9.2 9.4 9.6 9.6
Вода, мл 900
Водный экстракт уробактерий кизяк: вода 10:100) 840 20
10 Карбамид 57.2
Аммиачная селитра 28.4
АПАВ волгонат) 4.8
НПАВ (NP-40) 9.6 6.4 9.0 9.2 9.4 9.6 9.6
Вода, мл 900
Водный экстракт уробактерий кизяк:вода 10:100) 830 50
11 Карбамид 57.2 6.4 9.0 9.2 9.4 9.6 9.6
Аммиачная селитра 28.4
АПАВ (сульфонол) 4.8
НПАВ (АФ 9-12) 9.6
Вода, мл 900
Водный
экстракт уробактерий 800 30
кизяк:вода 10:100)
12 Карбамид 57.2
Аммиачная селитра 28.4
АПАВ 4.8
(сульфонол)
НПАВ (NP-50) 9.6 6.4 9.0 9.2 9.4 9.6 9.6
Вода, мл 900
Водный
экстракт уробактерий 820 40
(кизяк:вода 10:100)
Продолжение таблицы 2
При-
мер
Состав Концентра-
ция компонен-
тов, г/л
Число клеток в экстракте, млн кл./мл Объем экстракта, мл Изменение рН в процессе гидролиза
Исх. 2 часа 1 сут 5 сут 10 сут 20 сут
5%-ный pacтвор композиции
13 Карбамид 28.6
Аммиачная селитра 12.4
АПАВ (волгонат) 2.4
НПАВ (АФ 9-12) 4.8 6.4 9.0 9.3 9.6 9.6 9.6
Вода, мл 950
Водный экстракт уробактерий (кизяк:вода 10:100) 840 20
14 Карбамид 28.6
Аммиачная селитра 12.4
АПАВ (волгонат) 2.4
НПАВ (NP-40) 4.8
Вода, мл 950 6.4 9.0 9.3 9.6 9.6 9.4
Водный экстракт уробактерий (кизяк:вода 10:100) 800 50
15 Карбамид 28.6 6.4 9.0 9.3 9.6 9.6 9.6
Аммиачная селитра 12.4
АПАВ (сульфонол) 2.4
НПАВ (АФ 9-12) 4.8
Вода, мл 950
Водный экстракт уробактерий (кизяк:вода 10:100) 820 30
16 Карбамид 28.6
Аммиачная селитра 12.4
АПАВ (сульфонол) 2.4
НПАВ (NP-50) 4.8 6.4 9.0 9.3 9.6 9.6 9.6
Вода, мл 950
Водный экстракт уробактерий (кизяк:вода 10:100) 830 40
Таблица 3
Параметры ферментативного гидролиза карбамида в составе 10%-ного раствора композиции
Исследуемые параметры Время эксперимента, сут
исх. 1 4 10 25
Число микроорганизмов, млн кл./мл 60 100 450 840 800
Концентрация карбамида, г/л 57.2 13.3 0.53 0.28 0.07
Утилизация карбамида, % - 76.8 99.1 99.5 99.9
Концентрация NH4+, г/л 6.9 7.7 20.3 22.0 28.5
Концентрация CO2, л/л 0 0.37 5.04 12.17 22.6
pH 6.4 9.3 9.6 9.6 9.6
Таблица 4
Влияние продуктов ферментативного гидролиза карбамида в составе нефтевытесняющей композиции на изменение вязкости нефти
При-
мер
Концентра-
ция компози-
ции, %
НПАВ/АПАВ Изменение параметров в процессе гидролиза
pH плотность нефти, кг/м3 при 20°С вязкость нефти, мПа·с при 20°С
до после до после до после
Нефть месторождения Тамсагбулаг, Монголия
18 50 сульфанол/NP-40 6.4 8.8 0.847 0.847 2180 1677
19 10 волгонат/АФ 9-12 6.4 9.6 0.847 0.845 2180 1453
Нефть Усинского месторождения
20 25 волгонат/NP-5 0 6.4 9.0 0.965 0.955 12800 8000
21 5 сульфанол/АФ 9-12 6.4 9.6 0.965 0.955 12800 7110

Состав для снижения вязкости нефти в условиях низкотемпературных месторождений на основе нефтевытесняющей композиции, содержащей аммиачную селитру, поверхностно-активное вещество - ПАВ, карбамид и воду, отличающийся тем, что в композицию добавляют водный экстракт уробактерий, содержащий 800-840 млн кл./мл, полученный при постоянном перемешивании в течение 120 мин массы кизяков в воде в соотношении 10:100 соответственно, при следующих соотношениях компонентов, г/л:

Аммиачная селитра 14-142
Неионогенное ПАВ - АФ9-12 или NP-40 или NP-50 4,8-48
Анионактивное ПАВ - волгонат или сульфонол 2,4-24
Карбамид 28,6-286
Водный экстракт уробактерий, содержащий
800-840 млн кл./мл, полученный при постоянном
перемешивании в течение 120 мин в соотношении
кизяк:вода 10:100 20-50 мл/л
Вода остальное до 1 л


 

Похожие патенты:

Изобретение относится к области строительства скважин, в частности к способам приготовления бурового раствора на углеводородной основе, представляющего собой обратную эмульсию и применяемого для промывки при бурении нефтяных и газовых скважин с сильно искривленным стволом, скважин с большим проложением и горизонтальных скважин.

Изобретение относится к нефтегазодобывающей промышленности, в частности к ограничению водопритоков в добывающих скважинах, и может быть использовано для выравнивания профилей приемистости и изоляции промытых зон нагнетательных скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к реагентам комплексного действия для технологических жидкостей на полисахаридной основе, применяемых в бурении и капитальном ремонте скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к реагентам комплексного действия для технологических жидкостей на полисахаридной основе, применяемых в бурении и капитальном ремонте скважин.

Изобретение относится к водным жидкостям, загущенным вязкоупругим поверхностно-активным веществом - ВУП, эффективным как обрабатывающие жидкости и, в частности, как жидкости для гидроразрыва подземных пластов.
Изобретение относится к способу восстановления герметичности эксплуатационной колонны, используемой при нефтегазодобыче. .
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.

Изобретение относится к нефтедобывающей промышленности, может быть использовано при изоляции водопритока пластов. .

Изобретение относится к области строительства скважин, в частности к способам приготовления бурового раствора на углеводородной основе, представляющего собой обратную эмульсию и применяемого для промывки при бурении нефтяных и газовых скважин с сильно искривленным стволом, скважин с большим проложением и горизонтальных скважин.

Изобретение относится к нефтегазодобывающей промышленности, в частности к ограничению водопритоков в добывающих скважинах, и может быть использовано для выравнивания профилей приемистости и изоляции промытых зон нагнетательных скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к реагентам комплексного действия для технологических жидкостей на полисахаридной основе, применяемых в бурении и капитальном ремонте скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к реагентам комплексного действия для технологических жидкостей на полисахаридной основе, применяемых в бурении и капитальном ремонте скважин.

Изобретение относится к водным жидкостям, загущенным вязкоупругим поверхностно-активным веществом - ВУП, эффективным как обрабатывающие жидкости и, в частности, как жидкости для гидроразрыва подземных пластов.
Изобретение относится к способу восстановления герметичности эксплуатационной колонны, используемой при нефтегазодобыче. .
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.

Изобретение относится к нефтедобывающей промышленности, может быть использовано при изоляции водопритока пластов. .

Изобретение относится к технике и технологии подземного ремонта скважин, а именно к способу крепления призабойной зоны пласта, создания заколонного фильтра в продуктивном пласте нефтяных, водяных и газовых скважин, и может применяться для регулирования разработки нефтяных месторождений, для изоляции водопритока в нефтяные скважины и для регулирования профиля приемистости нагнетательных скважин, для обработки пласта, для ликвидации негерметичности эксплуатационных колонн, заколонного пространства и ликвидации проблемы пескопроявления
Наверх