Блок ориентации пилотажно-навигационного комплекса

Блок ориентации пилотажно-навигационного комплекса относится к авиационной технике, а именно к блокам ориентации самолетов и вертолетов. Техническим результатом является повышение надежности и точности пилотирования самолетов и вертолетов. Устройство отличается тем, что в него дополнительно введены второй инерциальный измерительный блок, первый и второй буферы, первый и второй узлы развязки, подключенные входами к выходам первого и второго инерциальных измерительных блоков соответственно, а выходами - к входу магнитометра, выход которого через первый и второй буферы подключен к входам первого и второго инерциальных измерительных блоков соответственно. Предлагаемое устройство используется в датчике курса и вертикали. 1 ил.

 

Изобретение относится к авиационной технике, в частности к блокам ориентации самолетов и вертолетов.

Известен блок ориентации курсовой системы [1], содержащий гирокомпас, аналого-цифровой преобразователь, вычислительную машину и индукционный магнитный датчик.

Недостатком данного устройства является неоднозначность выдаваемых параметров различными индукционными магнитными датчиками каждого из двух блоков ориентации, установленных на одном самолете.

Известен блок ориентации [2], содержащий инерциальный измерительный блок с входящими в него датчиками первичной информации, преобразователем и магнитометр.

Недостатком данного устройства является неоднозначность выдаваемых параметров различными магнитометрами каждого из двух блоков ориентации, установленных на одном самолете.

Заявленное изобретение направлено на повышение надежности и точности пилотирования самолетов и вертолетов.

Поставленная задача достигается тем, что в блок ориентации пилотажно-навигационного комплекса, содержащий первый инерциальный измерительный блок и магнитометр, согласно изобретению дополнительно введены второй инерциальный измерительный блок, первый и второй буферы, первый и второй узлы развязки, подключенные входами к выходам первого и второго инерциальных измерительных блоков соответственно, а выходами - ко входу магнитометра, выход которого через первый и второй буферы подключен ко входам первого и второго инерциальных измерительных блоков соответственно.

К существенным отличиям предложенного устройства относится введение в него второго инерциального измерительного блока, подключенного совместно с первым инерциальным измерительным блоком через узлы развязки и буферы к магнитометру.

При установке такого устройства на борт самолета или вертолета обеспечивается пилотирование двумя пилотами, причем информация о магнитном курсе поступает с одного магнитометра одновременно на оба инерциальных измерительных блока, обуславливая однозначность показаний обоих приборов, что повышает точность пилотирования.

Предлагаемое изобретение иллюстрируется чертежом, на котором представлена структурная схема устройства, содержащего первый инерциальный измерительный блок 1, магнитометр 2, второй инерциальный измерительный блок 3, первый буфер 4, второй буфер 5, первый узел 6 развязки, второй узел 7 развязки.

Выходы первого и второго инерциальных измерительных блоков 1 и 3 подключены ко входам первого и второго узлов 6 и 7 развязки, выходы которых подключены ко входу магнитометра 2, выход которого подключен через первый и второй буферы 4, 5 ко входам первого и второго инерциальных измерительных блоков 1, 3.

Устройство работает следующим образом.

Во время полета самолета или вертолета инерциальные измерительные блоки 1, 3 обрабатывают информацию собственных датчиков первичной информации и внешнего магнитометра 2. При установке на борту самолета двух блоков ориентации входящие в них магнитометры должны быть разнесены во избежание искажения магнитного поля Земли друг другом, поэтому будет иметь место неоднозначность их выходных параметров. Согласно изобретению используется один общий магнитометр 2 на два инерциальных измерительных блока 1 и 3, при этом питающее напряжение с них поступает на магнитометр 2 через первый и второй узлы развязки 6 и 7, а полезный сигнал магнитометра 2 поступает на инерциальные измерительные блоки 1, 3 через буферы 4, 5 - это сделано для того, чтобы в случае выхода из строя одного из инерциальных измерительных блоков 1, 3 питание осуществлялось от рабочего блока, а неисправный блок не влиял на выходной сигнал магнитометра 2.

Таким образом использование одного магнитометра 2 совместно с двумя инерциальными измерительными блоками 1, 3 обеспечивает однозначность параметров блока ориентации и повышает точность пилотирования.

Предложенное устройство используется в датчике курса и вертикали.

Источники информации

1 Патент США №4347730, кл. 73/1Е, 1982 г.

2 Юбилейная XV Санкт-Петербургская международная конференция по интегрированным навигационным системам. Сборник материалов. СПб., 2008 г., стр.263. Компенсация магнитной девиации интегрированной системы резервных приборов. В.М.Самойлов, Д.В.Свяжин (ближайший аналог).

Блок ориентации пилотажно-навигационного комплекса, содержащий первый инерциальный измерительный блок и магнитометр, отличающийся тем, что в него дополнительно введены второй инерциальный измерительный блок, первый и второй буферы, первый и второй узлы развязки, подключенные входами к выходам первого и второго инерциальных измерительных блоков соответственно, а выходами ко входу магнитометра, выход которого через первый и второй буферы подключен ко входам первого и второго инерциальных измерительных блоков соответственно.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для определения координат подвижных наземных объектов, в частности автотранспортных средств, особенно в автономных навигационных системах.

Изобретение относится к космической радионавигации и может применяться в измерительных средствах определения ориентации космического аппарата, предназначенных для коррекции параметров ориентации бортовой инерциальной навигационной системы (ИНС).

Изобретение относится к радиотехнике и может быть использовано для повышения непрерывности обслуживания пользователей широкозонных дифференциальных подсистем (ШДПС) спутниковых радионавигационных систем (СРНС) GPS (Global Positioning System) и ГЛОНАСС (Глобальная навигационная система) в условиях воздействия внезапных неблагоприятных факторов, таких как геомагнитные возмущения, мощные кратковременные радиошумы, локальные шумы многолучевости.

Изобретение относится к области морской геодезии и может быть использовано для определения уклонения отвесной линии (УОЛ) в океане на подвижном объекте в целях навигационно-гидрографического обеспечения его навигационного комплекса.

Изобретение относится к области неразрушающего контроля и может быть использовано для проверки пространственного положения магистральных трубопроводов большой протяженности и привязки их продольной оси к топографическим или географическим картам.

Изобретение относится к области внутритрубных инспектирующих снарядов, предназначенных для автономного определения геодезических координат трассы подземных газо- и нефтепроводов.

Изобретение относится к области определения пилотажно-навигационных параметров ЛА. .

Изобретение относится к измерительной технике и может использоваться в инерциальных системах ориентации и навигации. .

Изобретение относится к средствам ориентации и навигации объектов, подвижных в тех или иных средах, в частности внутритрубных инспектирующих снарядов магистральных трубопроводов.

Изобретение относится к области точного приборостроения, преимущественно гироскопического, и может быть использовано при создании гирокомпасов аналитического типа.

Изобретение относится к области приборостроения и может найти применение в бесплатформенных инерциальных системах навигации (БИНС) для различных классов носителей от наземных до авиационных, в частности в бесплатформенных системах ориентации (БСО)

Изобретение относится к области навигационного приборостения и может найти применение в бесплатформенных инерциальных навигационных системах (БИНС) и бесплатформенных инерциальных системах ориентации (БИСО) на трехосных волоконно-оптических гироскопах (ТВОГ) с одним общим источником излучения (ОИИ). Технический результат - повышение точности. Для этого измеряют корреляционную матрицу шумов (КМШ) ТВОГ с ОИИ в условиях, максимально приближенных к условиям использования БИСО на управляемом объекте (УО); вычисляют оптимальную ориентацию (оптимальные ориентации) связанного базиса относительно корпуса УО, при которой (которых) проекции вектора измеряемой абсолютной угловой скорости (ВАУС) УО на оси связанного базиса таковы, что по определенному критерию обеспечивается минимум дисперсии ошибки БИСО; устанавливают БИСО на основе ТВОГ с ОИИ на УО и ориентируют оси чувствительности ТВОГ относительно измеряемого ВАУС УО по определенному критерию так, чтобы обеспечить минимум дисперсии ошибки БИСО. 1 з.п. ф-лы, 3 ил.

Изобретение относится к авиационной технике, в частности к блокам ориентации самолетов и вертолетов. Технический результат - повышение точности пилотирования ЛА за счет введения калибровки магнитометра. Существенным отличием устройства является введение первого и второго устройства интерфейса и коммутирующего устройства. Существенным отличием способа является сравнение вычисленного фильтром гиромагнитного курса с истинным магнитным курсом, полученным через первое и второе устройства интерфейса. Разность вычисленного гиромагнитного курса и истинного магнитного курса вводят в ПЗУ каждого измерительного блока, после чего, разворачивая ЛА на углы, кратные 45°, разности гиромагнитного курса по отношению к истинным вводят в ПЗУ и используют при полете ЛА. Предложенное устройство используется в датчике курса и вертикали. 2 н.п. ф-лы, 1 ил.

Изобретение относится к наземным робототехническим средствам транспорта груза в заданную точку пространства, а также доставке роботизированного средства в заданное место для выполнения им иных функций без присутствия человека. Техническим результатом является повышение эффективности управления роботизированным средством. В заявленном способе оператор на снимках отмечает ориентир, а также дает команду роботизированному средству о движении на заданное расстояние по отношению к выделенному ориентиру и задает траекторию движении. Далее через бортовое устройство управления роботизированное средство разворачивают для движения по заданной траектории, при этом отслеживают движение образа-ориентира на цифровых снимках с бортовых видеокамер. Далее осуществляют движение по заданной траектории, при этом постоянно вычисляют расстояние до ориентира, а также положение ориентира в поле зрения видеокамер и его масштаб при правильной траектории движения, причем при движении роботизированного средства с помощью устройства управления минимизируют разницу между ожидаемым положением центра ориентира или его оконечными точками и реально наблюдаемым положением центра ориентира или его оконечными точками. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительным системам и может быть использовано при измерении курса летательного аппарата. Новизна способа заключается в том, что в оптико-электронной системе переднего обзора измеряют углы ориентации относительно строительных осей ЛА гиростабилизированного поля зрения телевизионного (ТВ) или тепловизионного (ТП) датчика изображений (ДИ), в котором оптическое изображение формируется в фокальной плоскости и считывается матричными чувствительными элементами, выделяют по ТВ/ТП изображениям опорные точки на поверхности Земли для их дальнейшего сопровождения, фиксируют траектории перемещения изображений опорных точек по фокальной плоскости ДИ, сопровождая их на последовательности кадров и регистрируя их координаты, моменты времени формирования соответствующих кадров, углы ориентации поля зрения ДИ относительно строительных осей ЛА, показания датчиков ускорений и формируемые с помощью СНС и ИНС оценки составляющих вектора скорости по строительным осям ЛА в эти моменты времени, выделяют на траекториях пары одновременно формируемых участков, для каждой пары выделенных участков траекторий определяют координаты точки схождения как точки пересечения продолжений хорд, стягивающих эти участки, определяют параметры угловых положений линий визирования, проходящих через полученные точки схождения, и центр проекции, который используется в ДИ для формирования оптического изображения, находя тем самым направления векторов средних скоростей ЛА на интервалах времени формирования выделенных пар участков траекторий движения изображений опорных точек по фокальной плоскости, используя зарегистрированные данные корректируют полученные направления векторов средних скоростей ЛА, приводя их к текущему моменту времени, определяют параметры углового положения вектора скорости ЛА в текущий момент времени относительно системы координат, связанной с полем зрения ДИ, как результат осреднения скорректированных параметров углового положения векторов средних скоростей ЛА, по найденным параметрам углового положения вектора скорости ЛА, углам ориентации поля зрения ДИ относительно строительных осей ЛА и углам крена и тангажа в текущий момент времени определяют углы, задающие направление полета относительно строительных осей ЛА и направление вектора путевой скорости ЛА относительно проекции продольной оси ЛА на горизонтальную плоскость (угол сноса). Технический результат заключается в повышении точности измерения курса летательного аппарата. 1 н.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, а именно к способу определения углового положения (в частности, угла крена) объекта, стабилизированного вращением (ОСВ), в пространстве. Способ определения угла крена объекта, стабилизированного вращением (ОСВ), заключается в том, что начиная с момента начала движения t0, на который известен априори угол крена объекта φнач, измеряют угловую скорость вращения ОСВ ω(t), путем интегрирования которой по времени от момента τ0 до конечного известного момента tk определяют величину изменения угла крена объекта, а величину угла крена φ(tk) на момент tk определяют согласно выражению: . При этом производят наблюдение за физическим параметром P(t), функционально связанным с изменением угла крена ОСВ, формируют, по меньшей мере, два раза момент τ0, являющийся характерной точкой на графике изменения физического параметра, например переходом физического параметра P(t) через «ноль» на участке установившегося движения. А интегрирование угловой скорости вращения ОСВ по времени осуществляют от момента начала движения t0 до первого сформированного момента τ0 нач и фиксируют величину интеграла - . Причем наблюдение за физическим параметром P(t) прекращают до возобновления в момент сформированного последующего второго момента τ0 посл, максимально приближенного к моменту tk, при этом изменение угла крена Δφ(t) относительно момента τ0 посл вычисляют согласно выражению: , где τ - измеренное время от τ0 посл до момента tk; Тпосл - измеренный период вращения в процессе формирования момента τ0 посл, а величину угла крена объекта φ(tk) на момент tk определяют согласно выражению: . Изобретение обеспечивает повышение точности определения угла крена ОСВ. 1 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано в системах морской геодезии. Технический результат - расширение функциональных возможностей. Для этого дополнительно введена косвенная стабилизированная в горизонте платформа, на которой установлены три моментных электродвигателя с сервоприводом, четыре акселерометра с вертикальной осью чувствительности и с механизмом их перемещения в горизонте первой пары акселерометров навстречу друг другу по заданному направлению и второй пары акселерометров навстречу друг другу по направлению, перпендикулярному заданному направлению перемещения первой пары акселерометров, измеритель линейной скорости перемещения акселерометров относительно подвижного объекта, регистратор моментов встречи двух акселерометров на траверзе первой и второй пары, при этом все устройства функционально связаны через введенный блок управления с бортовым вычислителем, в котором вычисляют искомые значения составляющих уклонения отвесной линии в меридиане и в первом вертикале. 3 ил.

Изобретение относится к области навигационных измерений и может быть использовано для определения координат местоположения подвижного объекта, например летательного аппарата (ЛА). Для достижения этой цели дополнительно осуществляют компенсацию погрешностей блока акселерометров за счет погрешностей акселерометров второго блока путем разворота чувствительных элементов до достижения максимума разности показаний акселерометров, приведенных к единой системе координат. Устройство является инерциальной навигационной мультисистемой, содержащей два навигационных вычислителя, два блока гироскопов, два блока акселерометров и систему управления пространственным положением блоками чувствительных элементов. Технический результат - повышение точности определения пилотажных и навигационных параметров полета летательного аппарата. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата (ЛА), определяющих движение ЛА относительно окружающей воздушной среды. Технический результат - расширение функциональных возможностей. Предложенное устройство содержит генератор ионных меток, канал регистрации ионных меток в виде системы приемных электродов, расположенных по окружности с центром в точке генерации ионных меток, и блока предварительных усилителей, измерительную схему в виде канала определения рабочего сектора, являющегося каналом грубого отсчета, канала точного измерения угла в рабочем секторе и канала истинной воздушной скорости, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми выходами по аэродинамическому углу и истинной воздушной скорости. 4 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах управления полностью свободными в пространстве объектами с шестью степенями свободы пространственного движения, например воздушными и космическими летательными аппаратами, ракетами, снарядами, боевыми элементами, торпедами и другими подводными аппаратами. Технический результат - упрощение способа за счет уменьшения числа каналов управления до двух и формирования измерительных сигналов на основе использования только одного сферического гироскопа. Для этого предлагается двухканальный способ наведения, основанный на формировании измерительных сигналов с помощью только одного сферического гироскопа в виде трех полиортогональных синусно-косинусных сигналов, которые в своих информативных признаках и параметрах несут информацию о значениях и знаках угловых положений как в ортонормированной прямоугольной декартовой системе координат, так и в единичной сферической, связанных с объектом относительно неподвижной системы координат, представляющей внешнее пространство. Из этих сигналов выделяют экваториальный и азимутальный угловые положения объекта, определяют их отклонения и знаки отклонений от заданных значений, формируют по двум каналам сигналы управления, пропорциональные отклонениям экваториального и азимутального углов, и подают их на реверсивные рулевые органы первого и второго каналов, моменты сил рулей которых расположены в экваториальной и азимутальной плоскостях, а направление вращения соответствует знакам отклонений. При этом способ при его реализации позволит уменьшить затраты технических средств бортовой аппаратуры, снизить массогабариты и стоимость объектов, а это важно для сверх- и гиперзвуковых ракет, так как позволит увеличить долю топлива и соответственно коэффициент тяги. 3 ил.
Наверх