Способ изготовления геркона с контролируемыми параметрами азотируемого слоя



 


Владельцы патента RU 2467425:

Открытое акционерное общество "Рязанский завод металлокерамических приборов" (ОАО "РЗМКП") (RU)

Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов. Особенностью предлагаемого способа изготовления является то, что до и после азотирования контакт-деталей геркона производят измерение напряжения пробоя геркона и контролируют толщину азотируемого слоя, определяемую по формуле: t=C(Uo-Ua)/Uo. Технический результат - повышение процента выхода годных изделий и уровня качества герконов при снижении их себестоимости. 1 табл.

 

Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов (герконов).

Технический результат - повышение выхода и качества годных герконов при снижении их себестоимости.

Предлагаемый способ изготовления геркона позволяет сформировать износостойкие микро-наноструктуры из нитридов железа и никеля с контролируемыми параметрами азотируемого слоя, что позволяет повысить выход годных изделий и тем самым снизить производственные затраты.

Известен способ, используемый при изготовлении серийного геркона МКА-14103 с длиной стеклянного баллона 14 мм согласно СЯ 4.830.031-01 МК, изложенный в [1], который включает следующие операции.

Пермаллоевую проволоку подвергают очистке от консервирующей смазки, в результате обезжиривания в ванне с горячим трихлорэтиленом и последующей ультразвуковой (УЗВ) очистки, после чего она поступает на автомат штамповки контакт-деталей геркона. После обезжиривания в ванне с перхлорэтиленом, сортировки и укладки в технологическую тару контакт-детали подвергают УЗВ промывке в ванне с деионизованной водой и после осушки отжигают в печи с поддувом азота или водорода с формированием заданных магнитных параметров.

Технологический процесс нанесения на контакт-детали гальванического покрытия включает 17 переходов между различными операциями, в том числе экологически опасные обезжиривание, декапирование в кислотном растворе, предзолочение, золочение, рутенирование. После УЗВ промывки и осушки в центрифуге контакт-детали поступают на заварку в стеклянный баллон, заполненный азотом. Заваренные герконы после отжига стеклянного баллона и магнитострикционной тренировки поступают на химическое полирование выводов с последующим лужением и контролем электрических параметров.

Однако существующий способ изготовления серийно выпускаемых герконов имеет следующие недостатки:

- высокая трудоемкость, сложность и нестабильность процесса гальванического нанесения контактного покрытия;

- высокая стоимость используемых драгоценных металлов;

- большой расход и невозвратные потери драгоценных металлов;

- большая длительность осаждения покрытия;

- сложность осаждения сплава заданного химического и фазового состава и заданной структуры;

- сложность получения тонких беспористых пленок с низким внутренним напряжением и с высокой адгезией к материалу контакт-детали;

- сложность и дороговизна оборудования;

- большие энергетические затраты;

- наличие экологически опасных технологических операций;

- недостаточно хорошие санитарно-гигиенические условия труда.

Наиболее близким способом является технологический процесс, описанный в патенте РФ №2393570, кл. МПК H01H 1/66, H01H 11/04 (2006.01.) опубл. 27.06.2010 г., Бюл. №18.

Способ изготовления геркона с азотированными контакт-деталями включает очистку пермаллоевой проволоки, штамповку контакт-деталей, обезжиривание и промывку, магнитный отжиг, заварку геркона, азотирование контакт-деталей импульсными разрядами, покрытие выводов и контроль электрических параметров.

Недостатком способа является отсутствие возможности неразрушающего контроля толщины азотируемого слоя, формируемого в приповерхностной области контакт-деталей геркона, от величины которой зависят эксплуатационные технические характеристики герконов (сопротивление контакта, количество срабатываний, максимальный коммутируемый ток и напряжение, мощность, наработка на отказ) и процент выхода годных изделий.

Задачей предлагаемого изобретения является улучшение способа изготовления геркона за счет введения неразрушающего контроля толщины азотируемого слоя на основе измерения напряжения пробоя до и после проведения операции азотирования приповерхностной области контакт-деталей геркона.

Поставленная задача решается тем, что предлагается способ изготовления геркона с контролируемыми параметрами азотируемого слоя контакт-деталей, включающий очистку пермаллоевой проволоки, штамповку контакт-деталей, обезжиривание и промывку, магнитный отжиг, заварку геркона, покрытие выводов, контроль электрических параметров и ионно-импульсное азотирование контакт-деталей, отличается тем, что до начала азотирования и после азотирования контакт-деталей производят измерение напряжения пробоя геркона и контролируют толщину азотированного слоя, определяемую по формуле:

t=C(Uo-Ua)/Uo,

где С=NaVгPoToa3/VaPa Тк S - константа для данного типа герконов,

Na - число Авогадро,

Vг - объем газа в герконе (внутренний объем баллона геркона),

Va=22,4 л - молярный объем газа,

Ро - давление газа в герконе после заварки,

Ра=760 мм рт.ст. - атмосферное давление,

а - постоянная решетки сплава внедрения,

S - площадь азотируемой поверхности контакт-детали (площадь перекрытия),

Uo - напряжение пробоя до обработки,

Ua - напряжение пробоя после обработки,

То=273 K, (0°C),

Тк=293 K, (20°C), температура геркона при измерении напряжения пробоя.

Ионно-плазменное азотирование поверхности контакт-деталей геркона происходит непосредственно внутри герметизированного баллона геркона, заполненного азотом, парциальное давление которого согласно закону сохранения материи должно уменьшиться, так как часть атомов газообразного азота при такой обработке будет диффундировать в приповерхностную область контакт-деталей с образованием нитридов железа и никеля. При этом согласно закону Пашена [3, 4] должно измениться напряжение пробоя. Не сложно показать, что в этом случае толщина азотируемого слоя может быть оценена по формуле:

Выражение (1) может быть легко получено в приближении

где Uпр - напряжение пробоя газа, Р - давление газа, d - межэлектродный зазор, κ - коэффициент пропорциональности. Это приближение с высокой долей вероятности выполняется на линейном участке правой ветви кривой Пашена [3, 4]. Экспериментально установлено, что напряжения пробоя герконов до и после обработки не выходят за пределы линейного участка правой ветви кривой Пашена (Таблица 1).

Согласно закону Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объем. В частности, при нормальных условиях, т.е. при 0°C (273 K) и 101,3 кПа, объем 1 моля газа равен 22,4 л. Этот объем называют молярным объемом газа Va. Пересчитать эту величину на другие температуру Тк и давление Ро можно с помощью уравнения Менделеева-Клапейрона:

Тогда, с учетом (2), количество молекул азота в объеме геркона при Р=Ро, Т=Тк

При ионно-плазменной обработке контакт-деталей геркона происходит диффузионное насыщение приповерхностных слоев контакт-деталей в области их перекрытия ионами азота с образование нитридных зон [2, 5-7]. При этом согласно закону сохранения материи количество молекул азота, находящегося в газообразном состоянии в герконе, с учетом (2) уменьшится пропорционально уменьшению напряжению пробоя и тогда доля молекул азота (от общего их числа в герконе), расходуемых на азотирование 1-й контакт-детали, будет равна

Тогда количество атомов азота в азотируемом слое контакт детали будет

или

Количество слоев атомов азота в приповерхностной области контакт-детали будет соответственно

Тогда толщина азотированного слоя

или

где

Совокупность отличительных признаков, заключающихся в проведении неразрушающего контроля толщины азотируемого слоя контактирующих поверхностей контакт-деталей каждого изготовляемого геркона, приводит к достижению нового технического результата - повышению процента выхода годных изделий и уровня качества герконов при снижении их себестоимости.

Способ осуществляется следующим образом.

Контакт-детали от серийно выпускаемого геркона, например МКА-14103, после магнитного отжига заваривают в стеклянном баллоне в атмосфере азота. После нанесения покрытия на выводы измеряют напряжение пробоя, проводят ионно-плазменную обработку, после которой повторно измеряют напряжение пробоя (Таблица 1) и определяют толщину азотируемого слоя по формуле (1), Таблица 1. Измерения напряжений пробоя проводят в соответствии с ГОСТ 25810-83 (СТСЭВ 3189-81).

Значение толщины азотированного слоя, полученное расчетным путем (для времени обработки τ=30с - t=86.9 нм) по формуле (1), согласуется со значением толщины азотированного слоя, измеренного методом послойного Оже-спектрального анализа контакт-деталей геркона после проведения ионно-плазменной обработки [6-7].

Предлагаемая совокупность отличительных признаков позволяет добиться нового положительного эффекта. Контроль толщины азотированного слоя согласно предлагаемому способу обеспечивает повышение выхода годных изделий, повышение уровня качества герконов при снижении их себестоимости.

Таблица 1
№ п/п Наименование Обозначение, размерность Значение параметра
1 Число Авогадро Na, моль-1 6·1023
2 Объем газа в герконе (внутренний объем баллона геркона) Vг, м3 29,6·10-9
3 Давление газа в герконе после заварки Ро, мм рт.ст. 280
4 Температура То, К 273
5 Постоянная решетки сплава внедрения а, Å 3.8 [8]
6 Молярный объем газа Va, м3 22.4·103
7 Атмосферное давление Pa, мм рт.ст. 760
8 Температура геркона при измерении напряжения пробоя Тк, К 293
9 Площадь азотируемой поверхности контакт-детали (площадь перекрытия), S, м2 0.34·10-6
10 Константа для данного типа герконов С, м 3.0414·10-6
11 Напряжение пробоя до обработки Uo, B 280
12 Напряжение пробоя после обработки Ua, B 200
13 Толщина азотированного слоя t, нм 869
14 Продолжительность обработки τ, с 3000

Источники информации

1. Р.М.Майзельс. Герконы. Перспективы применения. Новые разработки «ОАО РЗМКП» «Магнитоуправляемые контакты (герконы) и изделия на их основе». Сборник трудов первой международной научно-практической конференции. Рязань, Россия, 11-14 октября 2005 г., стр.3-14.

2. Патент РФ №2393570. Способ изготовления герконов с азотированными контакт-деталями. / Карабанов С.М., Майзельс P.M., Арушанов К.А., Зельцер И.А., Провоторов B.C., опубл. 27.06.2010 г., Бюл. №18.

3. Мик Дж. и Крэкс Дж. Электрический пробой в газах. - М.: Иностранная литература, 1960. - 605 с.

4. Д.Р.Актон, Д.Д.Свифт. Газоразрядные приборы с холодным катодом. - М.: Энергия, 1965. - 480 с.

5. Зельцер И.А., Карабанов С.М., Майзельс P.M., Саблин В.А. Исследование и разработка методов модификации поверхности герметизированных магнитоуправляемых контактов // Сборник трудов второй международной научно-практической конференции «Магнитоуправляемые контакты (герконы) и изделия на их основе», под ред. С.М.Карабанова. - Рязань: Полиграф, 2009. - С.184-207.

6. Зельцер И.А., С.М. Карабанов, Кузнецов А.А., Майзельс P.M., Саблин В.А., Черняк Е.Я. Исследование ионно-плазменной модификации железо-никелевых герметизированных магнитоуправляемых контактов методом электронной оже-спектроскопии // Сборник трудов второй международной научно-практической конференции «Магнитоуправляемые контакты (герконы) и изделия на их основе», под ред. С.М.Карабанова. - Рязань: Полиграф, 2009. - С.178-183.

7. Карабанов С.М. Наноструктурированные контактные покрытия // Альманах «Деловая слава России», 2010, №4, С.25-27.

8. Гольдшмидт X.Дж. Сплавы внедрения. - М.: Мир, 1971, вып.1. - 424 с.

Способ изготовления геркона с контролируемыми параметрами азотируемого слоя, включающий очистку пермаллоевой проволоки, штамповку контакт-деталей, обезжиривание и промывку, магнитный отжиг, заварку геркона, покрытие выводов, контроль электрических параметров и ионно-импульсное азотирование контакт-деталей, отличающийся тем, что до и после азотирования контакт-деталей производят измерение напряжения пробоя геркона и контролируют толщину азотируемого слоя, определяемую по формуле:

где C=NaVгPoToa3/VaPa Тк S - константа для данного типа герконов,
Na - число Авогадро,
Vг - объем газа в герконе (внутренний объем баллона геркона),
Va=22,4 л - молярный объем газа,
Ро - давление газа в герконе после заварки,
Ра=760 мм рт.ст. - атмосферное давление,
а - постоянная решетки сплава внедрения,
S - площадь азотируемой поверхности контакт-детали (площадь перекрытия),
Uo - напряжение пробоя до обработки,
Ua - напряжение пробоя после обработки,
То=273 K, (0°C),
Тк=293 K, (20°C).



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов. .

Изобретение относится к области электротехники, в частности к конструкции магнитоуправляемых герметизированных контактов, и может быть использовано в промышленном производстве этих приборов.
Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов (герконов).

Изобретение относится к области электротехники, в частности к конструкции магнитоуправляемых герметизированных контактов, и может быть использовано в промышленном производстве этих приборов.

Изобретение относится к электротехнике, и может быть использовано в устройствах автоматики для коммутации электрических цепей с увеличенным в 1,5-2 раза уровнем максимально допустимой мощности.
Изобретение относится к области электротехники и предназначено для нанесения контактного покрытия на рабочие части контакт-деталей различного типа герконов. .

Изобретение относится к электротехнике, в частности к магнитоуправляемым герметизированным контактам (герконам), и может быть использовано при разработке радиотехнической аппаратуры для коммутации высокочастотных полосковых линий или для согласования коаксиальных кабелей с волновым сопротивлением 75 или 50 Ом.

Изобретение относится к электротехнике и предназначено для нанесения контактного покрытия на рабочие части контакт-деталей мощных герконов. .

Изобретение относится к области электротехники и может быть использовано при изготовлении логических схем управления устройств автоматики. .

Изобретение относится к области электротехники, в частности к способам создания магнитоуправляемых герметизированных контактов, и может быть использовано в промышленном производстве этих приборов.
Изобретение относится к области электротехники, преимущественно к композиционным материалам, служащим для изготовления электрических контактов низковольтной аппаратуры, а также к способу изготовления таких контактов.
Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов (герконов).

Изобретение относится к области точного приборостроения и может быть использовано в авиационном приборостроении и машиностроении. .

Изобретение относится к электротехнике, в частности к коммутационным аппаратам, и предназначено для отключения аварийных токов. .

Изобретение относится к области электротехники, а именно к способу изготовления электрических контактов. .

Изобретение относится к области электротехники и может быть использовано, в частности, при производстве магнитоуправляемых герметизированных контактов (герконов).

Изобретение относится к электротехнике, в частности к магнитоуправляемым герметизированным контактам (герконам). .

Изобретение относится к электротехнике и может быть использовано при изготовлении серебросодержащих электрических контактов. .

Изобретение относится к электротехнике и может быть использовано при изготовлении серебросодержащих электрических контактов. .

Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов (герконов)
Наверх