Регулируемое исполнение тепловых компрессоров для непрерывной регенерации катализатора


 


Владельцы патента RU 2467799:

ЮОП ЛЛК (US)

Изобретение относится к регенерации катализаторов. Описана система регенерации катализатора, которая включает: колонну (104) регенерации катализатора, включающую зону (112) охлаждения, которая принимает поток (148) охлаждения катализатора; первый тепловой компрессор (138), в котором используют первый рабочий пар (142); и второй тепловой компрессор (140), размещенный параллельно с первым тепловым компрессором, в котором в качестве рабочего пара (152) используют азот; и один или несколько клапанов (154), которые выполнены с возможностью селективного направления охлажденного потока (132), по меньшей мере, в один тепловой компрессор, выбранный из первого теплового компрессора (138) или второго теплового компрессора (140) для получения потока (148) охлаждения катализатора. Описан способ регенерации катализатора, который включает: удаление потока (118) первого газа из колонны (104) регенерации; подачу потока (118) первого газа в воздухоподогреватель (122) для получения нагретого потока (124) первого газа; разделение нагретого потока (124) первого газа для получения возвратного потока (126) колонны регенерации и потока (128) контура охлаждения; охлаждение потока (128) контура охлаждения в холодильнике (130) зоны охлаждения для получения охлажденного потока (132); селективную подачу охлажденного потока (132), по меньшей мере, в один тепловой компрессор, выбираемый из первого теплового компрессора (138), в котором используют первый рабочий пар (142), или второго теплового компрессора (140), в котором в качестве второго рабочего пара (152) используют азот, для получения потока (148) охлаждения катализатора; и подачу потока (148) охлаждения катализатора в колонну (104) регенерации. Технический результат - упрощение непрерывной регенерации катализаторов. 2 н. и 8 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Системы и способы, описывающиеся в настоящем документе, относятся к регенерации отработанного катализатора в сфере каталитической конверсии углеводородов для получения подходящих углеводородных продуктов, в частности к тепловым компрессорам, использующимся в способе непрерывной регенерации катализатора (НРК).

Уровень техники

Катализаторы, использующиеся в каталитических способах для конверсии углеводородов, имеют тенденцию к дезактивации по тем или иным причинам. В тех случаях, когда дезактивацию вызывает накопление отложений кокса, регенерация катализатора для удаления отложений кокса может восстановить активность катализатора. Кокс обычно удаляют из катализатора в результате введения катализатора, содержащего кокс, при высокой температуре в контакте с кислородсодержащим газом для сжигания и удаления кокса по способу регенерации. Данные способы могут быть реализованы по месту, или катализатор можно удалять из реактора, в котором происходит конверсия углеводородов, и транспортировать в отдельную зону регенерации для удаления кокса. Были разработаны различные компоновки для непрерывного или полунепрерывного удаления частиц катализатора из зоны реакции и для удаления кокса в зоне регенерации.

Некоторые системы непрерывной регенерации катализатора предусматривают наличие теплового компрессора для облегчения непрерывного действия способа непрерывной регенерации катализатора в течение коротких периодов действия в условиях низкого уровня содержания кокса. Одна система, использующая тепловой компрессор, описывается, например, в заявке РСТ № PCT/US 2006/062647, содержание которой во всей своей полноте посредством ссылки включается в настоящий документ. Тепловой компрессор может обеспечивать циркуляцию воздуха от выпускного отверстия воздухоподогревателя для перемешивания с воздухом сжигания, поступающим в зону охлаждения, и подавать результирующее количество воздуха сжигания в зону охлаждения. Воздух сжигания в тепловом компрессоре может быть использован в качестве рабочего воздуха, и в системе могут возникать трудности, связанные с поддержанием действия вследствие возможной недостаточности результирующего количества воздуха сжигания в условиях низкого уровня содержания кокса для удовлетворения минимального требуемого расхода для воздухоподогревателя и/или для охлаждения катализатора.

Раскрытие изобретения

Системы и способы, описывающиеся в настоящем документе, относятся к непрерывной регенерации катализатора, в частности к таким установкам и способам, в которых используют множество тепловых компрессоров для облегчения непрерывной регенерации катализатора в условиях низкого уровня содержания кокса.

В одном аспекте предлагается система регенерации катализатора, которая включает колонну регенерации катализатора, первый тепловой компрессор, второй тепловой компрессор, размещенный параллельно с первым тепловым компрессором, и один или несколько клапанов. Колонна регенерации катализатора включает зону охлаждения, которая принимает поток охлаждения катализатора. В первом тепловом компрессоре используют первый рабочий пар. Во втором тепловом компрессоре в качестве рабочего пара используют азот. Для получения потока охлаждения катализатора один или несколько клапанов могут селективно направлять охлажденный поток, по меньшей мере, в один тепловой компрессор, выбираемый из первого теплового компрессора или второго теплового компрессора.

Во втором аспекте предлагается способ подачи потока охлаждения катализатора в колонну регенерации катализатора, который включает селективную подачу охлажденного потока, по меньшей мере, в один тепловой компрессор, выбираемый из первого теплового компрессора или второго теплового компрессора, для получения потока охлаждения катализатора, и в первом тепловом компрессоре используют первый рабочий пар. Во втором тепловом компрессоре используют второй рабочий пар. Поток охлаждения катализатора может быть подан в зону охлаждения катализатора в колонне регенерации катализатора.

В третьем аспекте предлагается способ регенерации катализатора, который включает удаление потока первого газа из колонны регенерации, подачу потока первого газа в воздухоподогреватель для получения нагретого потока первого газа, разделение нагретого потока первого газа для получения возвратного потока колонны регенерации и потока контура охлаждения, охлаждение потока контура охлаждения в холодильнике зоны охлаждения для получения охлажденного потока, селективную подачу охлажденного потока, по меньшей мере, в один тепловой компрессор, выбираемый из первого теплового компрессора или второго теплового компрессора, для получения потока охлаждения катализатора и подачу потока охлаждения катализатора в колонну регенерации. В первом тепловом компрессоре используют первый рабочий пар. Во втором тепловом компрессоре используют второй рабочий пар.

Краткое описание чертежа

Для целей иллюстрирования и описания были выбраны конкретные примеры, которые продемонстрированы на прилагаемых чертежах, составляющих часть описания изобретения.

Фигура представляет собой упрощенную технологическую схему для части способа непрерывной регенерации катализатора, которая включает контур газа охлаждения.

Осуществление изобретения

Фигура представляет собой упрощенную технологическую схему системы непрерывной регенерации катализатора (НРК), обозначенной в целом позицией 100. В соответствии с иллюстрацией отработанный катализатор 102 может быть удален из реактора и подан в колонну 104 регенерации катализатора. Колонна 104 регенерации катализатора может включать множество зон или ступеней регенерации, через которые проходит отработанный катализатор при проведении регенерации. В соответствии с иллюстрацией колонна 104 регенерации включает зону 106 сжигания, зону 108 галогенирования, зону 110 высушивания и зону 112 охлаждения. Отработанный катализатор может поступать в колонну 104 регенерации через впускное отверстие в верхней части колонны 104 регенерации. После поступления в колонну 104 регенерации отработанный катализатор может подвергаться воздействию способа регенерации при поступлении в зону 106 сжигания, а затем при прохождении через зону 108 галогенирования, зону 110 высушивания и зону 112 охлаждения. Регенерированный катализатор 114 может быть удален из колонны 104 регенерации катализатора и может быть возвращен в реактор.

В соответствии с иллюстрацией на фигуре способ 100 непрерывной регенерации катализатора включает контур 116 газа охлаждения. Контур 116 газа охлаждения включает поток 118 первого газа, который удаляют из выпускного отверстия 120 зоны охлаждения в зоне 112 охлаждения колонны 104 регенерации. Поток 118 первого газа может содержать воздух и может иметь температуру в диапазоне от 300°F (149°С) до 1000°F (538°С). Поток 118 первого газа может быть подан через канал в воздухоподогреватель 122. Воздухоподогреватель 122 нагревает поток 118 первого газа, например, до температуры 1050°F (566°С) для получения нагретого потока 124 первого газа. Нагретый поток 124 первого газа покидает воздухоподогреватель 122 и может быть разделен, по меньшей мере, на два потока газа, в том числе возвратный поток 126 колонны регенерации и поток 128 контура охлаждения. Возвратный поток 126 колонны регенерации может быть подан через канал обратно в колонну 104 регенерации и может быть подан в зону 110 высушивания. После его поступления в зону высушивания газ в возвратном потоке 126 колонны регенерации может подниматься по колонне 104 регенерации и может быть использован в зоне 106 сжигания.

Поток 128 контура охлаждения может быть подан через канал в холодильник 130 зоны охлаждения. Холодильник 130 зоны охлаждения может представлять собой теплообменник и предпочтительно представляет собой теплообменник непрямого теплообмена, такой как, например, теплообменник типа «труба в трубе» или теплообменник кожухотрубного типа. В случае, когда холодильник 130 зоны охлаждения представляет собой кожухотрубный теплообменник, для получения охлажденного потока 132 поток 128 контура охлаждения может быть пропущен через трубное пространство 130 холодильника зоны охлаждения.

Холодильник 130 зоны охлаждения может быть охлажден при использовании любой подходящей среды, такой как воздух или вода. Например, в соответствии с иллюстрацией на фигуре вентилятор 134 холодильника может принимать атмосферный воздух или воздух окружающей среды с улицы и может подавать поток 136 атмосферного воздуха в холодильник 130 зоны охлаждения для выполнения функции охлаждающей текучей среды для потока 128 контура охлаждения. В случае, когда холодильник зоны охлаждения представляет собой теплообменник кожухотрубного типа, например, поток 136 атмосферного воздуха может быть подан в межтрубное пространство холодильника 130 зоны охлаждения.

Как продемонстрировано на фигуре, контур 116 газа охлаждения может включать один или несколько тепловых компрессоров, таких как первый тепловой компрессор 138 и второй тепловой компрессор 140. В общем случае тепловые компрессоры 138 и 140 могут использовать кинетическую энергию первичной текучей среды, такой как описывающиеся ниже первый и второй рабочие пары, для перекачивания вторичной текучей среды, такой как охлажденный поток 132. В первом тепловом компрессоре может быть использован первый рабочий пар, а во втором тепловом компрессоре может быть использован второй рабочий пар. Второй рабочий пар предпочтительно может иметь состав, который отличается от состава первого рабочего пара. Например, в соответствии с иллюстрацией на фигуре в первом тепловом компрессоре 138 в качестве первого рабочего пара может быть использован воздух сжигания, а во втором тепловом компрессоре 140 в качестве второго рабочего пара может быть использован азот.

Первый тепловой компрессор 138 и второй тепловой компрессор 140 предпочтительно конфигурируют для параллельного функционирования. Охлажденный поток 132 можно селективно направлять и подавать, по меньшей мере, в один тепловой компрессор, выбираемый из первого теплового компрессора или второго теплового компрессора для получения потока 148 охлаждения катализатора. Охлажденный поток 132 может формировать, по меньшей мере, часть потока 148 охлаждения катализатора. Поток 148 охлаждения катализатора также может включать рабочий пар любого теплового компрессора, в который подают охлажденный поток 132. Поток 148 охлаждения катализатора, таким образом, может включать первый рабочий пар, второй рабочий пар или как первый, так и второй рабочие пары. Поток 148 охлаждения катализатора может быть подан через канал во впускное отверстие 150 колонны 104 регенерации и может быть подан в зону 112 охлаждения колонны 104 регенерации катализатора.

Охлажденный поток 132 может быть подан в первый тепловой компрессор 138, во второй тепловой компрессор 140 или может быть разделен и подан как в первый тепловой компрессор 138, так и во второй тепловой компрессор 140. Для селективного направления охлажденного потока 132 могут быть использованы один или несколько клапанов, таких как проиллюстрированный клапан 154. Один или несколько клапанов могут приводиться в действие при использовании одного или нескольких переключателей, таких как, например, программируемый переключатель. Охлажденный поток 132 можно селективно направлять исходя из рабочих условий, включающих нижеследующее, но не ограничивающихся только этим: уровень содержания кокса в катализаторе, давление коллектора контрольно-измерительной аппаратуры и другие рабочие условия.

В некоторых случаях желательными могут оказаться функционирование первого теплового компрессора 138 во время первого набора рабочих условий и функционирование второго теплового компрессора 140 во время второго набора рабочих условий. Например, контур 116 газа охлаждения может использовать первый тепловой компрессор 138 в обычных рабочих условиях или для осуществления кратковременного действия в условиях низкого уровня содержания кокса и может использовать второй тепловой компрессор 140 для осуществления действия в течение периодов непрерывных условий низкого уровня содержания кокса.

Что касается использования первого теплового компрессора 138, то первый рабочий пар 142 может быть подан в первый тепловой компрессор 138 через сушилку 144. Как продемонстрировано на фигуре, сушилка 144 может принимать поток 146 газа и может подавать рабочий пар 142 через канал в первый тепловой компрессор 138. Поток 146 газа может представлять собой воздух и может включать кислород и азот. Расход или количество первого рабочего газа 142 можно регулировать исходя из количества кислорода, необходимого для зоны 106 сжигания. Расход для первого рабочего пара 142 может быть получен исходя из пониженной доли воздуха сжигания, такой как, например, 25% от расчетного воздуха сжигания, и пониженного давления воздушного коллектора контрольно-измерительной аппаратуры, такого как, например, давление, которое является на 69 кПа (изб.) (10 фунт/дюйм2 (изб.)) меньшим, чем давление, доступное в обычных рабочих условиях.

Для облегчения функционирования первого теплового компрессора 138 в определенных условиях, таких как, например, условия более долговременного функционирования при низком уровне содержания кокса или очень низком уровне содержания кокса, поток 152 азота может быть подан и объединен с первым рабочим паром 142 для увеличения рабочего расхода для первого теплового компрессора 138. Поток 152 азота может обеспечивать получение увеличенного расхода рабочего газа и давления газа для содействия удовлетворению технологических потребностей, азот в результате приводит к получению пониженной концентрации кислорода в зоне хлорирования колонны регенерации. Однако в течение продолжительных периодов времени пониженная концентрация кислорода в зоне хлорирования колонны регенерации может оказать неблагоприятное воздействие на качество регенерации катализатора.

Что касается использования второго теплового компрессора 140, поток 152 азота может быть принят вторым тепловым компрессором 140 и может выполнять функцию второго рабочего пара для второго теплового компрессора 140. Поток 152 азота может по существу полностью состоять из азота. Поток 152 азота может быть подан во второй тепловой компрессор 140 при большем давлении, чем воздух сжигания, использующийся в качестве рабочего пара для первого теплового компрессора 138. Таким образом, второй тепловой компрессор 140 может функционировать при более высоком соотношении между количествами газа загрузки и рабочего газа в сопоставлении с тем, что имеет место для первого теплового компрессора 138. Более высокое соотношение может обеспечить получение дополнительного расхода газа загрузки для поддержания долговременного функционирования при низком уровне содержания кокса при одновременном сохранении надлежащей концентрации кислорода в зоне 108 галогенирования колонны 104 регенерации. В некоторых примерах давление потока 152 азота может быть на величину в диапазоне от 207 до 2068 кПа (изб.) (от 30 фунт/дюйм2 (изб.) до 300 фунт/дюйм2 (изб.)) большим, чем давление воздуха сжигания, использующегося в качестве рабочего пара для первого теплового компрессора 138. Расход потока 152 азота предпочтительно можно регулировать для выдерживания уровня содержания кислорода в зоне 108 галогенирования на величине, большей чем 10%, а предпочтительно на величине, большей чем 18%.

Как можно понять исходя из вышеизложенного, несмотря на описание в настоящем документе конкретных примеров для целей иллюстрирования, без отклонения от объема и сущности данного описания изобретения могут быть созданы и различные модификации. Поэтому предполагается вышеизложенное подробное описание изобретения рассматривать в качестве иллюстрации, а не ограничения и понимать то, что именно следующая далее формула изобретения с включением всех эквивалентов предназначена для конкретного указания и ясной претензии на заявленный объект.

1. Система регенерации катализатора, которая включает:
колонну (104) регенерации катализатора, включающую зону (112) охлаждения, которая принимает поток (148) охлаждения катализатора;
первый тепловой компрессор (138), в котором используют первый рабочий пар (142); и
второй тепловой компрессор (140), размещенный параллельно с первым тепловым компрессором, в котором в качестве рабочего пара (152) используют азот; и
один или несколько клапанов (154), которые выполнены с возможностью селективного направления охлажденного потока (132), по меньшей мере, в один тепловой компрессор, выбранный из первого теплового компрессора (138) или второго теплового компрессора (140) для получения потока (148) охлаждения катализатора.

2. Система регенерации катализатора по п.1, дополнительно включающая: воздухоподогреватель (122), который принимает поток (118) первого газа, удаленный из колонны (104) регенерации, и производит нагретый поток (124) первого газа; и
холодильник (130) зоны охлаждения, который принимает, по меньшей мере, часть (128) нагретого потока первого газа и производит охлажденный поток (132).

3. Система регенерации катализатора по п.2, в которой колонна (104) регенерации катализатора включает зону (106) сжигания, зону (108) галогенирования, зону (110) высушивания и зону (112) охлаждения, а поток (118) первого газа удаляют из зоны (112) охлаждения колонны (104) регенерации.

4. Система регенерации катализатора по п.1, в которой первый рабочий пар (142) подают в первый тепловой компрессор (138) через сушилку (144).

5. Система регенерации катализатора по п.4, в которой первый рабочий пар (142) содержит кислород и азот.

6. Система регенерации катализатора по п.1, в которой азот (152) подают во второй тепловой компрессор (140) при большем давлении, чем у первого рабочего пара (142), подаваемого в первый тепловой компрессор (138).

7. Система регенерации катализатора по п.6, в которой давление азота (152) на величину в диапазоне от 207 до 2068 кПа (изб.) (от 30 фунт/дюйм2 (изб.) до 300 фунт/дюйм2 (изб.)) является большим, чем давление первого рабочего пара (142).

8. Система регенерации катализатора по п.1, в которой второй тепловой компрессор (140) функционирует при более высоком соотношении между количествами газа загрузки и рабочего газа в сопоставлении с этим соотношением для первого теплового компрессора (138).

9. Система регенерации катализатора по п.1, в которой азот (152) характеризуется расходом, который регулируют для выдерживания уровня содержания кислорода в зоне (108) галогенирования на величине, большей, чем 18%.

10. Способ регенерации катализатора, который включает:
удаление потока (118) первого газа из колонны (104) регенерации;
подачу потока (118) первого газа в воздухоподогреватель (122) для получения нагретого потока (124) первого газа;
разделение нагретого потока (124) первого газа для получения возвратного потока (126) колонны регенерации и потока (128) контура охлаждения;
охлаждение потока (128) контура охлаждения в холодильнике (130) зоны охлаждения для получения охлажденного потока (132);
селективную подачу охлажденного потока (132), по меньшей мере, в один тепловой компрессор, выбираемый из первого теплового компрессора (138), в котором используют первый рабочий пар (142), или второго теплового компрессора (140), в котором в качестве второго рабочего пара (152) используют азот, для получения потока (148) охлаждения катализатора; и
подачу потока (148) охлаждения катализатора в колонну (104) регенерации.



 

Похожие патенты:
Изобретение относится к способам регенерации катализаторов. .

Изобретение относится к нефтехимической промышленности и касается получения высококачественных моторных топлив из газового конденсата. .
Изобретение относится к способу отделения и освобождения катализатора в реакции превращения кислородсодержащих соединений в олефины, который включает стадии: (а) превращения кислородсодержащих соединений в олефины во флюидизированной зоне в реакторе в присутствии катализатора типа молекулярных сит, имеющего углеродсодержащие отложения, где указанные кислородсодержащие соединения выбирают из группы, состоящей из метанола, этанола, диметилового эфира или их смеси; (b) отбора из реактора исходящего потока, содержащего олефины, причем исходящий поток захватывает часть катализатора, имеющего углеродсодержащие отложения; (с) отделения части катализатора от исходящего потока путем контактирования исходящего потока с нейтрализованной жидкой средой гашения в колонне гашения, чтобы образовать поток, содержащий катализатор; при этом нейтрализацию среды гашения проводят в отдельной секции после отделения части катализатора; и (d) сжигания в установке для сжигания углеродсодержащих отложений, которые находятся в той части катализатора, которая находится в потоке, содержащем катализатор.

Изобретение относится к способу и устройству для термического удаления кокса из сыпучей массы гранулированного селективного цеолитного катализатора на основе кристаллических алюмосиликатов типа пентасила для получения олефинов с 2 и 3 атомами углерода из смеси олефинов с 4-8 атомами углерода или метанола или диметилового эфира, используемого в реакторе (1).
Изобретение относится к регенерации катализаторов для гидроочистки нефтяного сырья на основе оксидов никеля или кобальта, молибдена и алюминия. .

Изобретение относится к способам регенерации катализаторов. .
Изобретение относится к способам регенерации катализаторов. .
Изобретение относится к активации катализаторов, в частности к катализаторам изомеризации легких бензиновых фракций. .
Изобретение относится к области сорбционной техники и может быть использовано для регенерации различных марок гопкалита, утративших каталитическую активность в процессе длительного хранения.

Изобретение относится к способам регенерации катализаторов, в частности кальцийфосфатных, и может быть использовано в нефтехимической промышленности для производства изопрена.

Изобретение относится к области органического синтеза, более конкретно к способу получения фенола и его производных путем каталитического окисления бензола и его производных.

Изобретение относится к способу получения ультравысокомолекулярного полиэтилена и способу активирования носителя катализатора. .

Изобретение относится к алкилированию алифатических углеводородов в присутствии кислотного катализатора и к самому катализатору. .
Наверх