Быстрозакристаллизованный сплав на основе алюминия для изготовления поршней

Изобретение относится к области металлургии сплавов, в частности к быстрозакристаллизованным деформируемым термически упрочняемым сплавам на основе системы Al-Si, и может быть использовано для производства поршней двигателей внутреннего сгорания и дизельных двигателей. Сплав на основе алюминия, получаемый методом быстрой кристаллизации, содержит следующие компоненты, в мас.%: кремний 16,0-19,5; медь 3,0-5,0; магний 0,7-1,2; марганец 0,3-0,7; железо 0,9-1,5; титан 0,2-0,5; цирконий 0,15-0,4; оксид алюминия 0,01-0,3; церий 0,001-0,005; никель до 1,3. Сплав, предназначенный для изготовления поршней, обладает высоким комплексом физико-механических, эксплуатационных и экологических характеристик. 2 табл., 3 пр.

 

Изобретение относится к области металлургии сплавов, в частности к быстрозакристаллизованным деформируемым термически упрочняемым сплавам на основе системы Al-Si, и может быть использовано для производства поршней двигателей внутреннего сгорания и дизельных двигателей, которые по сравнению с поршнями, изготовленными деформацией из слитка или отливкой в форму, обладают более высоким комплексом физико-механических, эксплуатационных и экологических характеристик. Кроме того, данный сплав может использоваться для изготовления других деталей, от которых требуется высокая износостокость, жаропрочность, низкий коэффициент термического расширения, размерная стабильность и т.п.

Известен жаропрочный деформируемый сплав на основе алюминия АК4-1, применяемый также для изготовления деталей поршневых двигателей, содержащий, вес.%: медь 1,9-2,7; магний 1,2-1,8; марганец 0,2; железо 0,8-1,4; кремний 0,35; титан 0,02-0,1; никель 0,8-1,4; цинк 0,3; хром 0,1; алюминий остальное (ГОСТ 4784-97 "Алюминий и сплавы алюминиевые деформируемые. Марки").

Недостатком этого сплава является относительно низкая износостойкость, а также высокий коэффициент линейного расширения (λ=22×10-6 1/град при Тисп. 20°C). Это снижает ресурс работы поршней, требует применения больших зазоров между поршнем и цилиндром, что приводит к увеличению эмиссии выхлопных газов, снижению мощности, увеличению шума двигателя.

Известен литейный сплав на основе алюминия АК18, предназначенный для отливки поршней в различные формы, а также для литья под давлением, содержащий, вес.%: медь 0,8-1,5; магний 0,8-1,3; марганец 0,2; железо 0,5; кремний 17,0-19,0; титан 0,2; никель 0,8-1,3; цинк 0,2; олово 0,001; свинец 0,005 (ГОСТ 30620-98 «Сплавы алюминиевые для производства поршней») - прототип.

Данный сплав обладает относительно низким коэффициентом линейного расширения (λ=19,5×10-6 1/град при Тисп. 20°C).

Недостатком сплава АК18 является то, что после отливки поршней в различные формы, а также после литья под давлением в структуре сплава присутствуют кристаллы кремния крупных размеров (в зависимости от условий литья от 100 до 400 мкм), располагающиеся неравномерно, иногда строчечно, что ослабляет сплав и может вызвать образование трещин. Хотя частицы первичного кремния обеспечивают относительно высокую износостойкость за счет того, что они создают сопротивление воздействию контртела, в процессе эксплуатации поршней может происходить их выкрашивание.

Еще одним недостатком сплава АК18 является относительно мягкая матрица, в результате чего под воздействием контртела происходит вдавливание частиц кремния в матрицу, что снижает износостойкость сплава.

Уровень прочности сплава АК18 относительно низкий как при комнатной температуре (σв=250-270 МПа), так и при повышенной. Кроме того, сплав имеет низкие пластические свойства (относительное удлинение 0,6-0,8%), что иногда вызывает разрушение поршня в процессе эксплуатации в месте канавки первого компрессионного кольца, а также в отверстиях под пальцы поршня.

Задачей изобретения является повышение физико-механических и эксплуатационных характеристик сплава, предназначенного для изготовления поршней.

Это достигается изменением химического состава и структуры сплава за счет дополнительного легирования и быстрой скорости охлаждения при кристаллизации.

Технической задачей изобретения является разработка деформируемого сплава на основе системы Al-Si для производства поршней двигателей внутреннего сгорания и дизельных двигателей с повышенным уровнем физико-механических свойств и эксплуатационных характеристик.

Техническим результатом предлагаемого изобретения является получение материала из алюминиевого сплава на основе системы Al-Si, обеспечивающего увеличение мощности, снижение шума, уменьшение эмиссии выхлопных газов при использовании поршней двигателей, изготовленных из этого материала.

Указанный технический результат достигается тем, что предложен деформируемый сплав на основе алюминия, получаемый методом быстрой кристаллизации, за счет чего удается ввести повышенное количество малорастворимых в равновесных условиях циркония, титана, диспергировать избыточные фазы, образованные никелем и железом, измельчить первичные кристаллы кремния либо изменить фазовый состав сплава, обеспечив формирование эвтектической структуры.

В предлагаемый сплав, содержащий кремний, медь, магний, никель, марганец, железо, титан, дополнительно вводят цирконий, оксид алюминия и церий при следующем соотношении компонентов в мас.%: кремний 16,0-19,5; медь 3,0-5,0; магний 0,7-1,2; марганец 0,3-0,7; железо 0,9-1,5; титан 0,2-0,5; цирконий 0,15-0,4; оксид алюминия 0,01-0,3; церий 0,001-0,005; никель до 1,3.

Цирконий в количестве 0,15-0,4% вводят в сплав для повышения прочностных свойств сплава при комнатной и повышенной температурах, упрочнения (повышения твердости) матрицы и, как следствие, повышения износостойкости.

Оксид алюминия в количестве 0,01-0,3% вводят в сплав технологически, в виде поверхностной оксидной пленки гранул. Частицы оксида алюминия не взаимодействуют с матрицей сплава, сохраняют стабильность формы и размеров в процессе эксплуатации, что способствует повышению жаропрочности.

Церий в количестве 0,001-0,005 вводят как поверхностно-активный компонент, который способствует защите поверхности гранул от окисления.

Высокая скорость охлаждения при кристаллизации способствует измельчению частиц кремния до размера не более 20 мкм, измельчает фазы, образованные железом с алюминием, марганцем или никелем, что повышает жаропрочность сплава.

Титан и цирконий в указанных количествах растворяются в алюминии. При последующих технологических нагревах сплава происходит распад твердого раствора и упрочнение сплава по механизму дисперсионного твердения за счет выделения фаз Al3Zr и Al3Ti.

Марганец упрочняет твердый раствор, а медь и магний упрочняют сплав в результате термообработки (закалки и старения), в результате образования дисперсных фаз CuAl2 и Mg2Si.

Таким образом, в сплаве удается сформировать структуру, которая обеспечивает высокую износостойкость: дисперсные частицы первичного кремния размером до 20 мкм, равномерно распределенные по объему матрицы, упрочненной цирконием, титаном, марганцем, магнием и медью. Избыточные фазы, образованные железом или железом и никелем, дисперсные частицы оксида алюминия также способствуют повышению износостойкости и жаропрочности сплава.

Заявленные пределы легирования сплава легирующими компонентами обеспечивают возможность получения оптимальной дисперсности фаз.

Введение церия, препятствуя окислению поверхности гранул, способствует лучшему схватыванию гранул между собой и, соответственно, улучшению качества поршней, исключает образование таких дефектов, как расслоения, рыхлоты и т.п.

Примеры опробования и испытания сплавов, соответствующих по составу предлагаемому изобретению.

В таблице 1 представлен химический состав опробованных вариантов предложенного сплава.

Таблица 1.
Химический состав известного и вариантов предлагаемого сплава.
Сплав № сплава Содержание компонентов, масс.%
Si Cu Mg Mn Fe Ti Zr Ni Al2O3 Ce Al
Прототип АК18 18,2 1,2 1,1 0,15 0,35 0,12 - 1,1 - - осн
Предложенные варианты сплава 1 16,2 4,0 0,9 0,5 1,1 0,35 0,39 1,1 0,27 0,004 осн
2 18,3 3,8 0,8 0,4 1,3 0,25 0,15 0,7 0,02 0,002 осн
3 19,1 3,2 1,1 0,6 1,4 0,43 0,24 0 0,1 0,003 осн

Сплав получали на установке центробежного литья с охлаждением капель расплава в воде, при этом скорость охлаждения была 103-104 К/с. Изготовление заготовок для последующего производства поршней осуществляли по схеме: сушка гранул при температуре 250°C; рассев гранул на фракцию -1,6+0,4 мм; засыпка гранул в технологические алюминиевые капсулы; вакуумная ступенчатая дегазация при температуре верхней ступени 450°C, герметизация капсулы и подача ее в контейнер диаметром 310 мм гидравлического пресса усилием 5000 тс, температура контейнера 400°C; компактирование при максимальном усилии пресса в течение 3 минут; механическая обработка компактированной заготовки для снятия остатков алюминиевой капсулы; прессование прутка диаметром 90 мм из нагретой до 400°C заготовки на прессе усилием 5000 т. Из прутка на вертикальном прессе в НЛП «Автотехнология» была проведена изотермическая штамповка заготовок поршней. Физико-механические свойства прутков после закалки и искусственного старения представлены в таблице 2.

Таблица 2.
Физико-механические свойства прутков.
Сплав № сплава Тисп, °С σВ, МПа σ0,2 МПа δ, % НВ, МПа КТЛР, 1×10-6 1/град Диам. пятна износа при Т-300°С, мм
Прототип АК 18 20 255 - 0,7 1050 19,5 4,8
250 120
Предлагаемый 1 20 420 360 4,5 1600 18 3,0
250 170
2 20 370 330 4,5 1500 17,5 2,8
250 165
3 20 390 340 5,0 1550 17 2,7
250 185

Таким образом, предложенные составы сплавов обеспечивают повышение износостойкости, более высокую прочность при комнатной и повышенной температуре и более высокую пластичность, более низкий коэффициент линейного расширения. Это, в итоге, обеспечивает повышение ресурса работы поршней, работоспособность поршней при форсированных режимах двигателей, увеличение мощности двигателей, улучшение экологических характеристик двигателей (снижение шума, уменьшение эмиссии выхлопных газов).

Быстрозакристаллизованный деформируемый сплав на основе алюминия для изготовления поршней, содержащий кремний, медь, магний, никель, марганец, железо, титан, отличающийся тем, что он дополнительно содержит цирконий, оксид алюминия и церий при следующем соотношении компонентов, мас.%:

кремний 16,0-19,5
медь 3,0-5,0
магний 0,7-1,2
марганец 0,3-0,7
железо 0,9-1,5
титан 0,2-0,5
цирконий 0,15-0,4
никель до 1,3
оксид алюминия 0,01-0,3
церий 0,001-0,005


 

Похожие патенты:

Изобретение относится к алюминиевым сплавам и способу их изготовления, а конкретнее к содержащим магний высококремниевым алюминиевым сплавам, используемым в качестве конструкционных материалов, и способу их изготовления.

Изобретение относится к области металлургии, в частности к технологии получения алюминиево-кремниевой лигатуры с содержанием кремния более 20%. .
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения.

Изобретение относится к металлургической промышленности и может быть использовано в литейном производстве для модифицирования чугуна и силумина. .
Изобретение относится к технологии производства алюминиево-кремниевых сплавов. .
Изобретение относится к технологии получения сплавов с использованием кристаллического кремния, например алюминиево-кремниевых сплавов. .

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе алюминия. .

Изобретение относится к производству алюминиевых сплавов и может быть использовано при приготовлении алюминиево-кремниевых сплавов с использованием кристаллического кремния.

Изобретение относится к области цветной металлургии и, в частности, технологии получения алюминиево-кремниевой лигатуры с содержанием кремния более 25%. .
Изобретение относится к области металлургии, в частности к составам лигатур для производства силуминов. .

Изобретение относится к области металлургии, а именно к модифицированию алюминиево-кремниевых сплавов доэвтектического и эвтектического составов, которые широко используются в транспортном машиностроении для получения литых деталей двигателей, в частности, летательных аппаратов
Изобретение относится к области цветной металлургии и может быть использовано для производства сплавов на основе алюминия, например, силуминов, применяемых в авиастроении, ракетной технике, машиностроении и других отраслях промышленности. Исходный материал, состоящий из смеси порошков глинозема, кварца и доломита при их весовом отношении, равном 1:0,06-0,45:0,08-0,24, подают потоком плазмообразующего газа в реактор газоразрядной плазмы при температуре в реакторе 5000-6000°C, продукты термического разложения охлаждают инертным газом и полученный порошок алюминий-кремниевого сплава конденсируют в водоохлаждаемой приемной камере. Изобретение позволяет получать наноразмерные порошки алюминий-кремниевых сплавов с размерами частиц 20-200 нм и удельной поверхностью 20-150 м2/г с легирующими добавками кальция и магния, что придает изделиям из этих порошков пластичность и коррозионную стойкость. 3 з.п. ф-лы, 6 пр.

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ получения материала в виде литой заготовки включает приготовление алюминиевого расплава, содержащего 1-2 мас.% железа и 0,2-0,6 мас.% кремния, введение в расплав при температуре 900-1100°С бора в виде борной кислоты и титана в виде стружки в соотношении, позволяющем получить в литой структуре частицы диборида титана в количестве от 4 до 8 мас.%, и кристаллизацию путем литья в форму. Техническим результатом изобретения является создание экономичного способа получения содержащего бор композиционного материала на основе алюминия, обладающего высоким уровнем поглощения нейтронного излучения в сочетании с наилучшими механическими свойствами и технологичностью. 5 пр., 2 табл., 1 ил.

Изобретение относится к активному материалу отрицательного электрода для электрического устройства, содержащему сплав с формулой состава SixZnyAlz, где каждый из х, y и z представляет массовое процентное содержание, удовлетворяющее: (1) x+y+z=100, (2) 26≤х≤47, (3) 18≤y≤44 и (4) 22≤z≤46. Также изобретение относится к электрическому устройству и отрицательному электроду для него. Технический результат заключается в том, чтобы предоставить активный материал отрицательного электрода для электрического устройства, такого как литий-ионная аккумуляторная батарея, проявляющего хорошо сбалансированные свойства сохранения высокой циклируемости и достижения высокой начальной емкости. 3 н. и 1 з. п. ф-лы, 2 табл., 10 ил., 2 пр.

Изобретение относится к области порошковой металлургии, в частности к композиционным материалам на основе алюминия, и может быть использовано в качестве конструкционного материала для деталей, работающих в условиях высоких механических и тепловых нагрузок, например для поршней форсированных двигателей внутреннего сгорания, работающих при температурах их нагрева 350°C и выше. Порошковый композиционный материал содержит, мас.%: кремний - 12,05…14,65, никель - 2,80…3,40, железо - 1,50…1,70, оксид алюминия - 1,05…1,30, углерод - 1,35…1,65, алюминий - остальное. Материал имеет пониженный коэффициент температурного линейного расширения при одновременно высоких жаропрочности и износостойкости. 4 ил., 3 табл.

Изобретение относится к области обработанных прецизионным точением деталей, полученных из выдавленных продуктов типа прутков, стержней, брусков, или даже труб из деформируемого алюминиевого сплава для прецизионного точения. Сплав имеет следующий состав, мас.%: 0,8<Si<1,5, предпочтительно 1,0≤Si<1,5; 1,0<Fe<1,8, предпочтительно 1,0<Fe≤1,5; Cu <0,1; Mn <1, предпочтительно <0,6; Mg 0,6-1,2, предпочтительно 0,6-0,9; Ni <3,0%, предпочтительно 1,0-2,0; Cr <0,25%; Ti <0,1%; другие элементы <0,05 каждый и 0,15 в сумме, остальное - алюминий. Объектом изобретения является также деталь, полученная прецизионным точением из такого выдавленного продукта, как определено выше. Изобретение направлено на улучшение обрабатываемости резанием сплавов на основе алюминия с содержанием кремния, не превышающим 1,5 %. 2 н. и 5 з.п. ф-лы, 3 пр., 3 табл., 3 ил.
Изобретение относится к порошковой металлургии, в частности к созданию легких материалов с низким коэффициентом линейного расширения, и может быть использовано в качестве конструкционного материала при создании командных приборов систем управления летательных аппаратов с высокими эксплуатационными характеристиками. Порошковый композиционный материал содержит, мас.%: кремний 41-45, никель 3,9-5,6, железо ≤0,48, оксид алюминия ≤2,8, алюминий остальное. Способ получения материала включает размол порошка кремния до необходимой дисперсности, магнитную сепарацию порошка кремния, смешивание порошка кремния с порошком алюминиевого сплава CAC1-50, засыпку полученной смеси в капсулу, вакуумную дегазацию и газостатическое прессование капсул с засыпанной смесью порошков и механическое снятие алюминиевой оболочки. При реализации изобретения получают нетоксичный материал, обладающий высокой размерной стабильностью, малым удельным весом, хорошей механической обрабатываемостью, низким коэффициентом линейного расширения, хорошей вакуум-плотностью и низкой магнитной восприимчивостью. 2 н.п. ф-лы, 1 табл.
Изобретение относится к экструдированному или катаному плакированному металлическому изделию и может быть использовано в транспортной промышленности, аэрокосмических изделиях, судах. Изделие содержит плакируемый металлический слой и плакирующий металлический слой на по меньшей мере одной поверхности плакируемого слоя, при этом плакируемый и плакирующий металлические слои выполнены из алюминиевых сплавов, содержащих, вес.%: от 3 до 8 Mg и Sc в диапазоне от 0,05 до 1 и при этом содержание Sc в сплаве плакируемого слоя ниже, чем его содержание в сплаве плакирующего слоя на 0,02% или более. Изобретение также относится к сварной структуре, включающей такое металлическое изделие. В результате использования изобретения получают изделия из алюминиевого сплава, содержащего Sc, с улучшенным балансом прочности и свариваемости. 4 н. и 10 з.п. ф-лы, 1 пр.
Изобретение относится к сплавам на основе алюминия, обладающим хорошей электропроводностью и теплопроводностью, и может быть использовано для производства деталей посредством литья под давлением, например радиаторов, применяемых для защиты электроники в автомобилях. Сплав содержит, мас.%: от 8,0 до 9,0 кремния, от 0,5 до 0,7 железа, не более 0,010 меди, не более 0,010 магния, не более 0,010 марганца, не более 0,001 хрома, не более 0,020 титана, не более 0,020 ванадия, не более 0,05 цинка, от 0.010 до 0,030 стронция, остальное составляет алюминий и неизбежные примеси не более 0,05 каждая, в сумме - не более 0,2. Изобретение направлено на улучшение электропроводности и теплопроводности сплава, получаемого литьем под давлением. 3 н. и 1 з.п. ф-лы, 3 табл.
Изобретение относится к листовому припою из многослойного алюминиевого сплава и может быть использовано при изготовлении теплообменников. Листовой припой из многослойного алюминиевого сплава, состоящий из: материала основного слоя, который на одной или двух сторонах имеет промежуточный слой, состоящий из Al-Si твердого припоя, расположенного между основным слоем и тонким покрывающим слоем поверх промежуточного слоя. При этом материал основного слоя и покрывающего слоя имеет более высокую температуру плавления, чем Al-Si твердый припой. Покрывающий слой содержит, мас.%: Bi 0,01-1,00, Mg ≤ 0,05, Mn ≤ 1,0, Cu ≤ 1,2, Fe ≤ 1,0, Si ≤ 4,0, Ti ≤ 0,1, Zn ≤ 6, Sn ≤ 0,1, In ≤ 0,1, неизбежные примеси ≤0,05, Al - остальное. Листовой припой может быть припаян в инертной или восстановительной атмосфере без необходимости применения флюса, что обеспечивает прочность паяного соединения. 2 н. и 22 з.п. ф-лы, 1 табл., 7 пр.
Наверх