Центратор обсадной колонны

Изобретение относится к строительству скважин и может быть использовано в компоновке обсадной колонны или хвостовиков при креплении нефтяных и газовых скважин, а также боковых стволов. Обеспечивает минимальный диаметр центратора при спуске колонны в скважину и максимальный диаметр после ее спуска и при цементировании наклонного или горизонтального ствола, а также обеспечивает эффективное центрирование обсадной колонны, снижает риск разрушения центратора в процессе спуска. Центратор обсадной колонны включает центрирующие металлические пластины, закрепляемые на кольцах, и стопорное кольцо для закрепления центратора на обсадной колонне. На внутренней поверхности центрирующих пластин закреплены полые элементы, выполненные из эластичного полупроницаемого материала, внутренняя полость которых заполнена водонабухающим полимером, при этом стопорное кольцо выполнено с закругленными краями. 2 ил.

 

Изобретение относится к строительству скважин и может быть использовано в компоновке обсадной колонны или хвостовиков при креплении нефтяных и газовых скважин, а также боковых стволов.

Для повышения качества крепления скважин, особенно в наклонно-направленных скважинах, обсадные колонны должны обязательно центрироваться.

Для центрирования обсадных колонн могут применяться жесткие центраторы, закрепляемые на обсадной колонне [Л.Н.Шадрин. Технология и организация крепления скважин. М., Недра, 1975 с.255]. Недостатком жестких центраторов является ухудшение проходимости обсадной колонны при ее спуске, особенно в местах сужений или перегибов профиля скважины.

Наиболее близким к предложенному по технической сущности и достигаемому эффекту является пружинный центратор [Справочник по креплению нефтяных и газовых скважин. М., Недра, 1977, с.98], у которого в качестве центрирующего элемента используются металлические пластины, закрепляемые на кольцах. Центратор закрепляется на обсадной колонне с помощью специального стопорного кольца, что обеспечивает безопасный спуск обсадной колонны через места сужений, благодаря сжатию центрирующих пластин и уменьшению диаметра центратора.

Недостатком центратора - прототипа является низкая эффективность при центрировании обсадных колонн.

Изобретение направлено на создание центратора для обсадной колонны, обладающего минимальным диаметром при спуске колонны в скважину и максимальным после ее спуска и при цементировании наклонного или горизонтального ствола.

Поставленная задача достигается тем, что в центраторе обсадной колонны, включающем центрирующие металлические пластины, закрепляемые на кольцах, и стопорное кольцо для закрепления центратора на обсадной колонне, согласно изобретению на внутренней поверхности центрирующих пластин закреплены полые элементы, выполненные из эластичного полупроницаемого материала, внутренняя полость которых заполнена водонабухающим полимером, при этом стопорное кольцо выполнено с закругленными краями.

Конструкция и принцип работы центратора обсадной колонны поясняется чертежами, где на фиг.1 изображен общий вид устройства, на фиг.2 - разрез по линии А-А.

Центратор обсадной колонны включает кольца 1, на которых закреплены центрирующие металлические пластины 2, между кольцами 1 размещается стопорное кольцо 3. На внутренней поверхности центрирующих металлических пластин 2 закреплены полые элементы 4, выполненные из эластичного полупроницаемого материала, внутренняя полость которых заполнена водонабухающим полимером 5.

Центратор обсадной колонны работает следующим образом.

В процессе спуска обсадной колонны в скважину центраторы устанавливаются на обсадных трубах с таким расчетом, чтобы после спуска обсадной колонны центраторы располагались в заданных интервалах скважины. Наличие закругленных краев стопорного кольца предупредит разрушение эластичного полупроницаемого материала при перемещении центратора относительно стопорного кольца при спуске обсадной колонны.

В процессе спуска обсадной колонны центратор находится в транспортном положении и закреплен на обсадной колонне стопорным кольцом 3. Внутренние полости элементов 4 из эластичного полупроницаемого материала заполнены водонабухающим полимером 5, поэтому центрирующие металлические пластины 2 имеют минимальный наружный диаметр, что обеспечивает беспрепятственный спуск обсадной колонны в скважину до проектной глубины. При этом металлические пластины 2 защищают полые элементы 4 от разрушения при трении обсадной колонны о стенки скважины. После спуска колонны в процессе промывки скважины и подготовки ее к цементированию жидкость диффундирует через полупроницаемые грани полых элементов 4 из эластичного полупроницаемого материала внутрь элементов и, взаимодействуя с водонабухающим полимером 5, вызывает его набухание. Давление набухания передается на металлические пластины 2, которые переходят в рабочее состояние и центрируют обсадную колонну. Таким образом, к началу цементирования обсадная колонна будет отцентрирована в скважине с любым углом наклона, в том числе и скважинах с горизонтальным проложением.

Применение данного устройства по сравнению с имеющимися центраторами позволяет более эффективно центрировать обсадную колонну и повысить качество цементирования обсадных колонн за счет:

- принудительного центрирования обсадных колонн, прилегающих к стенке скважины;

- лучшего центрирования обсадных колонн в скважинах с любой траекторией и более полного замещения промывочной жидкости цементным раствором.

Кроме того, применение предлагаемых центраторов снизит риск разрушения центраторов в процессе их спуска.

Центратор обсадной колонны, включающий центрирующие металлические пластины, закрепляемые на кольцах, и стопорное кольцо для закрепления центратора на обсадной колонне, отличающийся тем, что на внутренней поверхности центрирующих пластин закреплены полые элементы, выполненные из эластичного полупроницаемого материала, внутренняя полость которых заполнена водонабухающим полимером, при этом стопорное кольцо выполнено с закругленными краями.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности для вскрытия продуктивных пластов в скважинах с открытым забоем и с обсадными колоннами. .

Изобретение относится к скважинным устройствам и, в особенности, к устройству для каротажа скважины, способному работать в стволах скважин с широким диапазоном размеров.

Изобретение относится к породоразрушающему инструменту, предназначенному для калибровки стенок скважин и центрации компоновки низа бурильной колонны. .

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для защиты силового кабеля насоса от механических повреждений в процессе спуска-подъема подвески насосно-компрессорных труб.

Изобретение относится к области строительства нефтяных и газовых скважин, а именно к опорно-центрирующим и калибрующим устройствам бурильной колонны. .

Изобретение относится к буровой технике, а именно к устройствам, предназначенным для сохранения диаметра скважин в процессе всего времени работы породоразрушающего инструмента, преимущественно при очистке забоя скважины аэрированной жидкостью.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для защиты силового кабеля насоса от механических повреждений в процессе спуска-подъема подвески насосно-компрессорных труб в вертикальных, наклонно направленных и горизонтальных скважинах.

Изобретение относится к креплению и эксплуатации скважин, в частности к центрирующим устройствам для обсадных колонн. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к центрирующим устройствам обсадных колонн. .

Изобретение относится к нефтегазодобывающей промышленности, а именно к области строительства нефтяных и газовых скважин, и может быть использовано для центрирования муфтовых и безмуфтовых обсадных колонн нефтяных и газовых скважин любых типов.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для закрепления технических средств наружной оснастки на колонне труб, спускаемой в скважину

Изобретение относится к строительству скважин и может быть использовано в компоновке обсадной колонны или хвостовиков при креплении нефтяных и газовых скважин, а также боковых стволов

Изобретение относится к нефтегазовой промышленности и может быть использовано при цементировании обсадных колонн в процессе строительства скважин

Предложен протектор для защиты силового кабеля в скважине, содержащий корпус, выполненный как одно целое с кабельным каналом и с центральным каналом с размером под наружный диаметр насосно-компрессорной трубы для фиксации корпуса протектора на муфтовом соединении. Один конец откидных дугообразных зажимных скоб выполнен с петлеобразным концом с возможностью вращения на оси, которая проходит через петлеобразную скобу. Второй конец крепится посредством болта к корпусу. Корпус протектора выполнен штамповкой, оснащен двумя направляющими ребрами, усилителями пазов и оградительными ребрами пазов. Также оснащен направляющими элементами входа и выхода кабеля из кабельного канала корпуса, с помощью которых устанавливается необходимый зазор b между НКТ в зависимости от толщины применяемого кабеля. Откидные дугообразные зажимные скобы выполнены двухслойными, а концы скоб крепятся друг к другу посредством Т-образного соединения с внутренней стороны и направлены в сторону НКТ. Крепежный болт оснащен защитным чехлом. Корпус протектора выполнен литьем, оснащен четырьмя направляющими ребрами и оградительными ребрами пазов, а также направляющими элементами входа и выхода кабеля из кабельного канала корпуса. 3 з.п. ф-лы, 11 ил.

Изобретение относится к нефтяной промышленности и может быть применено при геофизических исследованиях двух продуктивных пластов в одной добывающей скважине. Установка содержит параллельные длинную и короткую колонны НКТ, децентраторы установленные на длинной колонне НКТ, параллельный якорь, глубинные приборы, размещенные выше и ниже пакера, геофизический кабель, закрепленный в децентраторах посредством замковых устройств, и устройство герметичного перехода кабеля. При этом децентраторы выполнены с полусферическими пазами со снятыми фасками и не закреплены к телу колонны НКТ, вследствие чего имеют возможность поворота относительно ее оси, но ограничены упорными кольцами в продольном перемещении. Верхний и нижний глубинные приборы соединены между собой одним геофизическим кабелем, а к пакеру пристыкован скважинный фильтр. Короткая колонна НКТ пропущена через эксцентричные направляющие - децентраторы посредством полусферических пазов со снятыми фасками. Технический результат заключается в повышении надежности устройства и упрощении монтажных операций путем создания в эксплуатационной колонне направленного свободного пространства для спуска второй колонны НКТ и спуска двух глубинных приборов посредством одного геофизического кабеля. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи нефти и газа. Протектолайзер колонны насосно-компрессорных труб включает в себя первый кольцевой сектор и второй кольцевой сектор. Сектора соединяются посредством разъемного соединения и цилиндрического шарнира на насосно-компрессорной трубе. Силовой кабель проходит через сквозной паз. Прорезь, расположенная на внешней поверхности первого кольцевого сектора, предназначена для установки прижимной планки посредством, например, болтов. Во втором кольцевом секторе выполнен дополнительный паз для прокладки или дополнительного кабеля, или трубки для подачи ингибитора. Узел демпфирования выполнен в виде выемки на внешней поверхности кольцевого сектора. В выемке установлен стержень с загнутыми концами для крепления в выемке. Свободное пространство выемки заполнено упругим материалом. При этом часть поверхности удлиненного элемента выступает над наружной поверхностью первого кольцевого сектора или второго кольцевого сектора. Технический результат заключается в защите от механического воздействия внешней поверхности колонны насосно-компрессорных труб. Также для крепления силового кабеля к колонне насосно-компрессорных труб и его защиты при спускоподъемных операциях. Применение узла демпфирования позволяет снизить воздействия вибраций и колебаний, передающихся от работающего скважинного оборудования. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области нефтедобычи, а точнее к устройствам защиты скважинного оборудования от механических повреждений. Может быть использовано для защиты электродвигателя центробежного насоса от механических повреждений при спускоподъемных операциях, а также для снижения уровня вибраций и колебаний, возникающих при запуске электродвигателя центробежного насоса и охлаждения его при работе. Протектор погружного электродвигателя состоит из корпуса, выполненного в виде полого цилиндра. Корпус снабжен верхней присоединительной резьбой и нижней присоединительной резьбой. На корпусе расположены ребра. Между ребрами в корпусе выполнены сквозные наклонные отверстия. Каждое ребро протектора снабжено одним узлом демпфирования, выполненным в виде выемки на внешней поверхности ребра. В выемке установлен стержень с загнутыми концами для крепления в ребре. Свободное пространство выемки заполнено упругим материалом. Часть поверхности стержня выступает над внешней поверхностью ребра. Техническим результатом, получаемым при использовании предлагаемого изобретения, является простота и надежность конструкции, а также защита двигателя от внешних повреждений. Также снижение уровня вибрации электродвигателя центробежного насоса при его запуске и охлаждение электродвигателя центробежного насоса при его эксплуатации. 4 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для проводки наклонного и горизонтального участков скважины. Устройство содержит корпус с наклонными пазами и размещенным в нем штоком. Снизу со штоком жестко соединен поршень, который выполнен кольцевым и размещен в камере, образованной наружной стенкой штока и внутренней стенкой корпуса. В наклонных пазах корпуса закреплены соединенные посредством тяг с поршнем лапы с зубками. Снизу на корпусе установлен нижний переводник с внутренним кольцевым сужением. Нижний переводник ниже кольцевого сужения оснащен кольцевым расширением. Сверху устройство оснащено телеметрической системой. Нижний конец штока выполнен с возможностью герметичного взаимодействия с кольцевым сужением. В кольцевом расширении установлен подпружиненный вверх нижний полый поршень, выполненный с возможностью продольного перемещения вверх штока до выхода его из герметичного соединения с кольцевым сужением. Шток подпружинен вниз с большим усилением, чем подпружинен вверх нижний поршень. Между нижним поршнем и кольцевым сужением размещен шарик, а снизу кольцевого сужения и сверху нижнего поршня напротив друг друга с краю выполнены выборки под шарик. Устройство обеспечивает возможность многократной корректировки зенитного угла скважины в процессе бурения без подъема на устье скважины. 4 ил.

Группа изобретений относится к буровым долотам и компоновкам низа бурильной колонны. Обеспечивает предотвращение вибраций и других отклонений бурового долота и/или компоновки низа бурильной колонны. Буровое долото содержит внутреннюю полость, сообщенную текучей средой с бурильной колонной, и множество калибрующих поверхностей и резцов, размещенных на внешней части бурового долота. Множество калибрующих поверхностей имеют множество отверстий, которые позволяют текучей среде из внутренней полости бурильной колонны выходить из бурового долота, причем по меньшей мере одно отверстие расположено приблизительно на 90° сзади большинства резцов, при этом множество отверстий также содержат отверстие, имеющее другое проходное сечение относительно от по меньшей мере одного отверстия для производства несбалансированной боковой силы, причем буровое долото выполнено так, что текучая среда непрерывно подается из каждого отверстия для создания результирующего стабилизирующего эффекта. Компоновка низа бурильной колонны содержит указанное буровое долото. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к строительству скважин и может быть использовано в компоновке обсадной колонны или хвостовиков при креплении нефтяных и газовых скважин, а также боковых стволов

Наверх