Способ распознавания неисправности "rotating stall" в питаемом полупроводниковым преобразователем компрессоре



Способ распознавания неисправности "rotating stall" в питаемом полупроводниковым преобразователем компрессоре
Способ распознавания неисправности "rotating stall" в питаемом полупроводниковым преобразователем компрессоре

 


Владельцы патента RU 2468258:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к способу распознавания неисправности «rotating stall» (вращательный отрыв потока) в компрессоре, который приводится в действие с помощью питаемого полупроводниковым преобразователем трехфазного электродвигателя. Вычисленное из измеренных выходных токов полупроводникового преобразователя и измеренного пропорционального скорости вращения сигнала оценочное значение крутящего момента сравнивают с определенным из измеренного и заданного пропорционального скорости вращения сигнала номинальным значением крутящего момента так, что при их неравенстве генерируется сигнал, который показывает, что наступила неисправность вращательного отрыва потока. Изобретение позволяет определять неисправность вращательного отрыва потока без датчиков давления и/или приемников колебаний. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу распознавания неисправности «rotating stall» (вращательный отрыв потока) в компрессоре, который приводится в действие с помощью питаемого полупроводниковым преобразователем трехфазного электродвигателя.

При работе компрессоров могут возникать следующие неисправности, а именно «помпаж» (surge), «отрыв потока» (stall) и «вращательный отрыв потока» (rotating stall). В работе с названием «Rotating Stall - An Overview of Dresser-Rand-Experience», J.M. Sorokes, опубликованной в феврале 2003 г. фирмой Dresser-Rand Company, Houston, Техас, коротко поясняются эти неисправности, прежде чем подробно поясняется неисправность вращательного отрыва потока.

Неисправность вращательного отрыва потока часто предшествует неисправности помпажа. Обе неисправности являются ограниченно допустимыми, однако на основании возникающих при неисправности вращательного отрыва потока колебаний она вызывает усталость материала. До настоящего времени распознавание этой неисправности вращательного отрыва потока осуществляется лишь в больших компрессорах с помощью датчиков давления и/или приемников колебаний. Качество и разрешающая способность распознавания зависит от позиционирования и числа датчиков и/или приемников. Установка этих датчиков давления и/или приемников колебаний и их оценка являются сложными. При применении датчиков давления могут возникать проблемы относительно герметичности мест установки и относительно разрешающей способности распознавания состояния.

Из DE 102004060206 В3 известен компрессор, который приводится в действие с помощью питаемого от полупроводникового преобразователя трехфазного электродвигателя. Применяемый полупроводниковый преобразователь имеет регулирование возбуждения. Согласно этому патенту предлагается способ работы питаемого полупроводниковым преобразователем компрессора, с помощью которого должны значительно уменьшаться длительность, а также интенсивность состояний помпажа. В этом способе из величин сигналов приводного полупроводникового преобразователя компрессора и хранящейся в памяти граничной характеристики помпажа определяют фактическое рабочее состояние компрессора. За счет применения величин сигналов питаемого полупроводниковым преобразователем трехфазного электродвигателя можно очень быстро устанавливать наличие недопустимого рабочего состояния. Для этого применяют величины образующей крутящий момент составляющей тока и фактического значения скорости вращения приводного полупроводникового преобразователя. Кроме того, для этого способа требуется граничная характеристика помпажа и зависящая от скорости вращения характеристика крутящего момента.

В основу изобретения положена задача создания способа распознавания неисправности вращательного отрыва потока в питаемом от полупроводникового преобразователя компрессоре, в котором применяют величины сигналов приводного полупроводникового преобразователя.

Эта задача решена, согласно изобретению, с помощью признаков пункта 1 формулы изобретения.

Изобретение основывается на понимании того, что в питаемом от полупроводникового преобразователя компрессоре вращательный отрыв потока ведет к падению тока якоря приводящего в действие компрессор питаемого полупроводниковым преобразователем трехфазного электродвигателя.

В способе, согласно изобретению, из измеряемых выходных токов полупроводникового преобразователя вычисляют образующую крутящий момент составляющую тока, которая эквивалентна оценочному значению крутящего момента. С помощью регулирования скорости вращения определяют в зависимости от измеряемого пропорционального скорости вращения сигнала и заданного пропорционального скорости вращения сигнала номинальное значение образующей крутящий момент составляющей тока, которая эквивалентна номинальному значению крутящего момента. Имеющееся при регулировании возбуждения оценочное значение крутящего момента двигателя сравнивают со стационарным номинальным значением крутящего момента двигателя. Если это оценочное значение отклоняется от стационарного номинального значения крутящего момента двигателя, то имеется неисправность вращательного отрыва потока.

За счет применения уже имеющихся приводных величин можно отказаться от дополнительных датчиков давления и/или приемников колебаний.

Предпочтительные варианты выполнения способа, согласно изобретению, следуют из зависимых пунктов 2-7 формулы изобретения.

Для дальнейшего пояснения изобретения делаются ссылки на чертежи, на которых схематично показан вариант выполнения устройства для выполнения способа согласно изобретению, а именно на чертежах изображено:

фиг.1 - блок-схема питаемого от полупроводникового преобразователя компрессора с устройством для выполнения способа согласно изобретению, и

фиг.2 - график зависимости от времени измеряемого якорного тока при неисправности вращательного отрыва потока.

На фиг.1 позицией 2 обозначено устройство для выполнения способа, согласно изобретению, позицией 4 - расположенный на стороне нагрузки полупроводниковый преобразователь, позицией 6 - регулирование возбуждения, позицией 8 - трехфазный электродвигатель, позицией 10 - устройство для измерения пропорционального скорости вращения сигнала ω, и позицией 12 - компрессор. Трехфазный электродвигатель 8 соединен на стороне статора с выходами расположенного на стороне нагрузки полупроводникового преобразователя 4, который называется также инвертором. Компрессор 12 и устройство 10 для измерения пропорционального скорости вращения сигнала ω соединены механически с ротором трехфазного электродвигателя 8. Расположенный на стороне нагрузки полупроводниковый преобразователь является частью двухзвенного вентильного преобразователя напряжения. На стороне постоянного напряжения этот расположенный на стороне нагрузки полупроводниковый преобразователь 4 соединен с промежуточным контуром напряжения, с которым соединен также на стороне постоянного напряжения расположенный на стороне сети полупроводниковый преобразователь. По причинам наглядности от этого двухзвенного вентильного преобразователя напряжения показан лишь расположенный на стороне герметизации полупроводниковый преобразователь 4.

Регулирование 6 возбуждения имеет вычислитель 14 фактического значения и вычислитель 16 номинального значения. Вычислитель 14 фактического значения, который часто называют также вычислителем потока, соединен с измерительными устройствами 18 и 20 для выходных токов iS1, iS2 и iS3 и выходных напряжений uS1, uS2 и uS3 расположенного на стороне нагрузки полупроводникового преобразователя 4. Вычислитель 14 фактического значения, который имеет, например, модель тока и напряжения, вычисляет из этих измерительных величин iS1, iS2 и iS3 и uS1, uS2 и uS3 и параметров трехфазного электродвигателя 8 ортогональные составляющие тока возбуждения и положение потока. Когда вычислитель 14 фактического значения имеет модель тока, то для этой модели тока требуются наряду с измеренными выходными токами iS1, iS2 и iS3 расположенного на стороне нагрузки полупроводникового преобразователя 4 также еще пропорциональный скорости вращения сигнал ω. Этот сигнал ω требуется также для вычислителя 16 номинального значения, так что этот сигнал ω показан с помощью прерывистой линии в вычислителе 14 фактического значения. Поскольку вычисленные фактические значения являются величинами модели, то они обозначены значком «^».

Вычислитель 16 номинального значения имеет, с одной стороны, контур 22 регулирования скорости вращения и контур 26 регулирования крутящего момента и, с другой стороны, преобразовательное устройство 28. Контур 22 регулирования скорости вращения имеет сравнивающее устройство 30 и регулятор 32 скорости вращения. Контур 26 регулирования крутящего момента также имеет сравнивающее устройство 34 и регулятор 36. Этот контур 26 регулирования крутящего момента расположен за контуром 22 регулирования скорости вращения. Сравнивающее устройство 30 образует из заданного номинального значения ω* и измеренного пропорционального скорости вращения сигнала ω рассогласование, которое с помощью регулятора 32 скорости вращения регулируется на ноль. На выходе регулятора 32 скорости вращения находится номинальное значение m* крутящего момента, которое с помощью сравнивающего устройства 34 сравнивается с оценочным значением крутящего момента, которое пропорционально измеренной составляющей тока. С помощью регулятора 36, на выходе которого имеется номинальное значение ортогональной составляющей тока, оценочное значение крутящего момента доводится до номинального значения m* крутящего момента. Ортогональная составляющая тока называется также образующей крутящий момент составляющей тока и является составляющей тока вектора тока возбуждения двигателя. Перед контуром 24 регулирования потока включена схема 38 образования номинального значения потока, которая на стороне выхода соединена с входом сравнивающего устройства 40 контура 24 регулирования потока. На инвертирующий вход этого сравнивающего устройства 40 подается оценочное значение ортогональной составляющей тока. На стороне выхода это сравнивающее устройство соединено с регулятором 42 потока, на выходе которого имеется номинальное значение второй ортогональной составляющей i*Sd тока. Эта вторая ортогональная составляющая i*Sd тока называется также образующей поток составляющей тока. Эти обе составляющие i*Sd и i*Sq тока преобразуются с помощью оператора 44 поворота вектора, на угловой вход которого подается вычисленное оценочное значение угла потока , в ортогональные составляющие i* и i* тока статора. С помощью преобразователя 46 координат из этих ортогональных составляющих i* и i* тока статора создаются три номинальных значения i*S1, i*S2 и i*S3 тока трехфазной системы токов. Эти номинальные значения i*S1, i*S2 и i*S3 тока подаются в соответствии с фазой в соответствующее сравнивающее устройство 48, которое на стороне выхода соединено с соответствующим регулятором 50 тока. Эти сравнивающие устройства 48 соединены, каждое, на стороне входа, кроме того, с измерительным устройством 18.

Устройство 2 для выполнения способа, согласно изобретению, обрабатывает в соответствии со способом, согласно изобретению, величины оценочного значения крутящего момента и номинального значения m* крутящего момента привода, состоящего из расположенного на стороне нагрузки полупроводникового преобразователя 4 и трехфазного электродвигателя 8 с компрессором 12. Результатом является сигнал SRS, который сигнализирует, что наступает неисправность вращательного отрыва потока. Для создания этого сигнала SRS сравниваются друг с другом оба сигнала и m* крутящего момента, при этом номинальное значение m* крутящего момента является стационарным значением. Поскольку это номинальное значение m* крутящего момента определяется с помощью контура 22 регулирования скорости вращения, то это номинальное значение m* крутящего момента зависит от рабочей точки. Если вычисленное оценочное значение крутящего момента не совпадает со стационарным номинальным значением m* крутящего момента, то имеется неисправность вращательного отрыва потока.

На фиг.2 показан график зависимости от времени хода изменения измеренного якорного тока трехфазного электродвигателя 8 с соединенным компрессором 12 при неисправности вращательного отрыва потока при скорости вращения n=17000 об/мин. В момент времени tRS1 якорный ток резко падает и снова возрастает в момент времени tRS2. Это падение якорного тока происходит вследствие неисправности вращательного отрыва потока.

Для определения возникновения неисправности вращательного отрыва потока в момент времени tRS1, непосредственно после этого момента времени tRS1, оценочное значение крутящего момента, которое пропорционально образующей крутящий момент составляющей тока трехфазного электродвигателя 8, пропускают через фильтр, при этом фильтр имеет дифференциальные составляющие. Это означает, что с приходом неисправности вращательного отрыва потока фильтрованное оценочное значение крутящего момента скачкообразно изменяет свое значение, при этом стационарное номинальное значение m* крутящего момента остается постоянным. Для обеспечения возможности определения неисправности вращательного отрыва потока также во время возникающей смены нагрузки сравнивают измеренное отклонение фактического значения от номинального значения крутящего момента, которое появляется на выходе сравнивающего устройства 34 контура 26 регулирования крутящего момента в качестве регулировочного отклонения, с заданным максимальным значением. Если это максимальное значение превышается, то во время смены нагрузки возникает неисправность вращательного отрыва потока.

С помощью этого способа, согласно изобретению, можно в компрессоре, который приводится в действие с помощью питаемого полупроводниковым преобразователем трехфазного электродвигателя 8, отказаться от дополнительных датчиков давления и/или приемников колебаний, при этом в компрессоре 12 не возникают больше недостатки этих дополнительных элементов. Кроме того, неисправность вращательного отрыва потока определяется надежно и синхронно с моментом времени его возникновения, так что можно своевременно принимать противомеры.

Этими мерами являются:

- Уменьшение скорости вращения: для этого сначала необходимо уменьшить крутящий момент двигателя для того, чтобы противодействующий момент компрессора 12 мог действовать тормозящим образом. Целью является уменьшение массового потока для достижения новой устойчивой рабочей точки.

- Увеличение скорости вращения: это требует сначала увеличения крутящего момента двигателя. Целью является увеличение массового потока и тем самым достижение снова устойчивой рабочей точки.

Для обеспечения возможности скорейшего определения неисправности вращательного отрыва потока после его появления в способе, согласно изобретению, применяются уже имеющиеся сигналы питаемого полупроводниковым преобразователем трехфазного электродвигателя 8. За счет этого способ, согласно изобретению, можно в качестве прикладной программы интегрировать в полупроводниковый преобразователь. За счет этого можно каждый компрессор 12, который приводится в действие с помощью такого питаемого полупроводниковым преобразователем трехфазного электродвигателя 8, контролировать относительно неисправности вращательного отрыва потока без дополнительных затрат.

1. Способ распознавания неисправности «вращательный отрыв потока» в компрессоре (12), который приводится в действие с помощью питаемого полупроводниковым преобразователем трехфазного электродвигателя (8), при этом вычисленное из измеренных выходных токов (iS1, iS2 и iS3) полупроводникового преобразователя и измеренного пропорционального скорости вращения сигнала (ω) оценочное значение () крутящего момента сравнивают с определенным из измеренного и заданного пропорционального скорости вращения сигнала (ω, ω*) номинальным значением (m*) крутящего момента так, что при их неравенстве генерируется сигнал (SRS), который показывает, что наступила неисправность «вращательного отрыва потока».

2. Способ по п.1, отличающийся тем, что вычисленное оценочное значение () крутящего момента дифференцируют.

3. Способ по п.1, отличающийся тем, что вычисленное номинальное значение (m*) крутящего момента дифференцируют.

4. Способ по п.1, отличающийся тем, что образованное из оценочного значения () крутящего момента и номинального значения (m*) крутящего момента отклонение крутящего момента сравнивают с зависящим от рабочей точки стационарным значением так, что при превышении генерируется сигнал (SRS).

5. Способ по любому из пп.1-4, отличающийся тем, что применяемые значения (, m*) крутящего момента фильтруют.

6. Способ по п.4, отличающийся тем, что образованное отклонение крутящего момента фильтруют.

7. Способ по п.4, отличающийся тем, что сигнал (SRS) создает предупредительную индикацию.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД.

Изобретение относится к области компрессоростроения, в частности к системам защиты от помпажа турбокомпрессоров, и может быть использовано в различных отраслях промышленности.

Изобретение относится к усовершенствованиям компрессоров, в частности к усовершенствованиям способа регулирования центробежных компрессоров, чтобы сделать максимальной их эффективность.

Изобретение относится к области защиты осевых и центробежных компрессоров от помпажа и может быть использовано в системах защиты и управления газоперекачивающих агрегатов как для нагнетателя, так и для осевых компрессоров газоприводных двигателей.

Изобретение относится к способам защиты компрессоров от помпажа и может быть использовано в химической и других отраслях промышленности. .

Изобретение относится к способу управления турбокомпрессором, в соответствии с которым в трубопроводе сжатого воздуха расположен обратный клапан. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД

Изобретение относится к испытательным стендам для определения характеристик и границы устойчивой работы компрессора в составе двигателя

Газотурбинный двигатель, например двухконтурный турбореактивный двигатель, включает промежуточный кожух, содержащий выполненную в виде тела вращения внутреннюю стенку, ограничивающую с наружной стороны канал течения первичного потока воздуха и средства отбора воздуха. На заднем по потоку конце закрепляется наружный кожух компрессора высокого давления. Средства отбора воздуха находятся в канале этого компрессора высокого давления и связаны на выходе со средствами повторного впрыскивания воздуха в переднюю по потоку часть этого компрессора высокого давления. Средства отбора воздуха связаны со средствами повторного впрыскивания воздуха при помощи кольцевого коллектора, охватывающего внутреннюю выполненную в форме тела вращения стенку промежуточного кожуха по потоку перед компрессором высокого давления. Они располагаются в радиальном направлении между этой выполненной в форме тела вращения внутренней стенкой и выполненной в форме тела вращения наружной стенкой промежуточного кожуха, которая ограничивает с внутренней стороны канал течения вторичного потока воздуха газотурбинного двигателя. Изобретение позволяет упростить запитывание кольцевого коллектора воздухом не увеличивая массу и длину газотурбинного двигателя. 12 з.п. ф-лы, 4 ил.

Компрессор для турбомашины содержит кожух (4), по меньшей мере, одну ступень компрессора и полости (5), выполненные в упомянутом кожухе по пути хода подвижных лопаток (1). Ступень компрессора образована неподвижным лопаточным колесом (2) и подвижным лопаточным колесом (1), размещенным на выходе упомянутого неподвижного колеса (2). Полости (5) имеют длину L2, измеренную по оси и смещенную в сторону входа относительно подвижных лопаток (1) таким образом, чтобы образовать перекрытие с длиной L1. Длины L1 и L2 составляют соответственно от 35 до 50% и от 80 до 90% осевой хорды Сах, измеренной на внешнем конце подвижных лопаток (1). Полости (5) не сообщаются между собой. Такая конфигурация обеспечивает одновременно хорошее всасывание воздуха в полость и повторную подачу насколько возможно близко на вход зазора подвижных лопаток. Кроме того, тот факт, что полости не сообщаются между собой, устраняет любую окружную рециркуляцию и, таким образом, риск паразитной повторной подачи на уровне лопатки, которая могла бы поступать из соседней полости, что ухудшило бы эксплуатационные качества компрессора. Повторная подача осуществляется исключительно насколько возможно ближе ко входу лопаточного зазора. 2 н. и 11 з.п. ф-лы, 5 ил.

Диффузор для диагонального или центробежного компрессора газотурбинного двигателя содержит, по меньшей мере, одну лопатку (20), имеющую сторону нагнетания, сторону всасывания и первую боковую поверхность (22). Лопатка имеет множество отверстий (32), открывающихся на сторону всасывания и/или сторону нагнетания и сообщающихся с, по меньшей мере, одной полостью, образованной в лопатке. Полость (30) проходит в поперечном направлении относительно лопатки и открывается на первую боковую поверхность. Поперечное сечение полости (30) изменяется в поперечном направлении лопатки, причем это поперечное сечение увеличивается по направлению к первой боковой поверхности (22). Достигается устранение помпажа путём равномерного всасывания текучей среды за счет того, что увеличение поперечного сечения полости, рассматриваемое от нижней части полости, выбирается таким образом, чтобы отверстия, сообщающиеся с полостью, имели одинаковую скорость всасывания и чтобы одно отверстие имело скорость всасывания, которая является равномерной по всему его сечению. 2 н. и 10 з.п. ф-лы, 9 ил.

Изобретение относится к способу управления комбинированным устройством и комбинированному устройству, в котором может быть применен данный способ. Способ управления устройством 1, которое содержит, по меньшей мере, компрессорную установку 2 и/или устройство для сушки с одной стороны и систему 3 регенерации тепла с другой стороны. Система 3 регенерации тепла поглощает тепло из компрессорной установки 2. Комбинированное устройство 1 дополнительно содержит контроллер 5 и средство 6 для установления одного или более параметров системы. Контроллер 5 управляет как компрессорной установкой 2 и/или устройством для сушки, так и системой 3 регенерации тепла, на основе вышеупомянутых параметров системы, с оптимизацией общей эффективности комбинированного устройства. Изобретение направлено на снижение общего энергопотребления комбинированного устройства. 2 н. и 1 з.п. ф-лы., 1 ил.
Наверх