Способ получения генераторного газа из растительного сырья

Изобретение относится к области химии. Генераторный газ получают в горизонтальном реакторе, топливо в камеру газификации подают сверху по касательной к внутренней стенке реактора, многоструйную подачу воздуха в зону пиролиза осуществляют через перфорацию зоны сужения. Полученную газовзвесь завихряют. Осуществляют газификацию при температуре 500-600°C, а пиролиз - при температуре 600-700°C при коэффициенте избытка воздуха 0,25-0,42. Расход воздуха регулируют таким образом, чтобы в зоне газификации он в 3-5 раза превышал расход в зоне пиролиза и зоне сужения реактора. Изобретение позволяет повысить степень газификации топлива и обеспечивает отсутствие скапливания золы в реакторе. 2 ил., 1 табл.

 

Изобретение относится к переработке растительного сырья, в частности овсяной шелухи, и может быть использовано для получения газообразного топлива теплоэнергетических установок.

Известен способ получения генераторного газа, в том числе из растительных остатков, путем пиролиза и газификации твердого топлива (RU 2293108, публ. 2007 г.), который реализуют в вертикальном реакторе, корпус которого в верхней и нижней частях имеет форму цилиндра, а в средней - усеченного конуса, при этом в зоне пиролиза и зоне газификации имеются сопла для тангенциальной подачи воздуха. Известный способ включает вертикальную загрузку топлива в реактор, тангенциальную подачу предварительно нагретого потока воздуха в зону пиролиза с одновременным проведением процессов во взвешенном состоянии в едином реакционном объеме. В известном способе используют полидисперсное топливо с размером частиц не более 10 мм, к которому подают поток воздуха со скоростью 7-15 нм/с, нагретый до температуры не менее 300°C. В зону пиролиза дополнительно подают воздух радиально многоструйным потоком, реализуемым за счет сквозной перфорации, имеющейся в стенке корпуса зоны пиролиза. Одновременно в зону газификации также подают воздух тангенциальным потоком, имеющим идентичные с зоной пиролиза термодинамические характеристики. Пиролиз и газификацию осуществляют при температуре 580-600°C и коэффициенте избытка воздуха 0,15-0,25 с регулированием расхода воздуха, который в зоне газификации в 1,5-2,5 раза превышает расход в зоне пиролиза.

Эффективность известного способа, заключающаяся в устранении необходимости подготовки топлива и снижении температуры процесса, обусловлена созданием аэродинамических условий движения потоков топлива и воздуха, где основной вихревой поток непрерывно поднимается вверх по спирали горизонтальными вращательными движениями; при прохождении конусной части корпуса его осевая составляющая уменьшается, а тангенциальная и радиальная увеличиваются. Расход воздуха, который в зоне газификации в 1,5-2,5 раза превышает расход в зоне пиролиза, обеспечивает высокую плотность основного вихря, что позволяет преодолеть силу тяжести частиц топлива и воспрепятствовать их падению. Одновременно в верхней цилиндрической части корпуса возникают вторичные вихри за счет радиальной подачи воздуха многоструйным потоком через перфорированную стенку корпуса. Вторичные вихри при встрече с основным потоком сообщают ему дополнительный импульс, поддерживая большие относительные скорости газовой и твердой фаз, уменьшая тем самым влияние силы тяжести на сепарацию частиц топлива. При этом происходит возвращение в зону пиролиза инерционных непрореагировавших частиц с возникновением их многократного вращения до полного сгорания. Мелкодисперсные частицы топлива - зола в количестве 1% - выводятся вместе с полученным генераторным газом.

В процессе реализации известного способа отбор газа происходит в средней части вертикального реактора. В результате при использовании растительных топлив с низкой плотностью, таких как лузга или шелуха зерновых, наблюдается вынос непрореагировавшего окислителя в зону пиролиза и к наличию кислорода в генераторном газе, что говорит о неполной газификации топлива. Зола по наружной поверхности газоотводной трубы частично выпадает в нижнюю цилиндрическую часть газификатора, где накапливается, образуя застойные зоны. Большая высота конструкции газификатора также относится к недостаткам известного способа.

Заявлен способ получения генераторного газа, который, как и известный, включает вертикальную загрузку материала в реактор, газификацию и пиролиз в объеме реактора, имеющего зону сужения, тангенциальную подачу предварительно нагретого потока воздуха в зону газификации и многоструйную радиальную подачу нагретого воздуха в зону пиролиза, осуществляемую через перфорацию. Способ отличается тем, что газ получают в горизонтальном реакторе, топливо в камеру газификации подают сверху по касательной к внутренней стенке реактора, многоструйную подачу воздуха в зону пиролиза осуществляют через перфорацию зоны сужения, полученную газовзвесь завихряют, газификацию осуществляют при температуре 500-600°C, пиролиз - при температуре 600-700°C при коэффициенте избытка воздуха 0,25-0,42, при этом расход воздуха регулируют таким образом, чтобы в зоне газификации он в 3-5 раза превышал расход в зоне пиролиза и зоне сужения реактора.

Сущность заявленного способа заключается в следующем. Предварительно нагретый поток воздуха, тангенциально поданный в зону газификации, захватывает частицы топлива, поданного в эту камеру сверху по касательной к внутренней стенке реактора, чем создает вихревой поток газовзвеси, интенсифицирующий процесс газофикации. В зоне сужения реактора скорость вихря увеличивается, улучшая вынос золы и остатков топлива в зону пиролиза. При этом, за счет многоструйной подачи воздуха в зону пиролиза, осуществляемой через перфорацию зоны сужения, создаются локальные вихревые потоки. Завихряясь, газовзвесь, состоящая из генераторного газа, золы и частично не прореагировавшего топлива, поступает в зону пиролиза, где в среде генераторного газа идет пиролиз.

Процесс газификации в горизонтальном реакторе идет в вихревом потоке от загрузки топлива прямоточно по ходу движения газовзвеси от подачи воздуха на газификацию через зону сужения до зоны пиролиза и выхода генераторного газа с выносом золы. При заявленных температурах и расходах воздуха в зоне газификации, пиролиза и сужения, создаются такие аэродинамические условия движения потоков топлива и воздуха, при которых в зону пиролиза поступает только прореагировавший окислитель и наличия кислорода в полученном генераторном газе нет. Улучшается вынос золы и остатков топлива в зону пиролиза, исключая появление застойных зон скапливания золы. Новый технический результат, достигаемый заявленным изобретением, заключается в повышении степени газификации топлива и отсутствия скапливания золы в реакторе.

Способ осуществляют следующим образом. В качестве исходного материала для получения генераторного газа использовали овсяную шелуху с насыпной плотностью 150 кг/м3. Дисперсный состав шелухи: 15% - до 2,5 мм, 46% - от 2,5 до 1,6 мм, 27% - от 1,6 до 0,63 мм, 5% - от 1 до 0,63 мм, 7% - меньше 0,63 мм. Теплота сгорания - 3800 ккал/кг. Газ получают в газогенераторе, фиг.1, 2. Материал шнеком подают в реактор, имеющий наружный корпус 1 и внутренний футерованный водоохлаждаемый объем 2 газогенератора через бункер 3. С помощью вентилятора через патрубки 4 и сопла 5 в зону газификации 6 подают воздух, предварительно подогретый до температуры 100-150°C в специальных рубашках. Процесс газификации происходит в вихревом потоке, скорость которого в зоне сужения 7 реактора увеличивается. За счет многоструйной подачи воздуха в зону пиролиза, осуществляемой через перфорацию 8 зоны сужения 7, создаются локальные вихревые потоки. Далее через завихрители 9 газовзвесь, состоящая из генераторного газа, золы и частично не прореагировавшего топлива, поступает в зону пиролиза 10, где в среде генераторного газа идет пиролиз. Температурный режим газификации 500-600°C и 600-700°C - пиролиза. С данной температурой газ выходит из газогенератора в трубчатый газоводяной теплообменник, который доводит температуру генераторного газа до 350°C. Вся зола топлива и частично недогоревшие частицы выносятся из газогенератора и теплообменника вместе с генераторным газом. Генераторный газ поступает в золоуловитель, где происходит улавливание золы и недогоревших частиц. Состав полученного генераторного газа удовлетворяет требованиям, изложенным в таблице 1.

Таблица
Основные характеристики генераторного газа
Наименование параметра Единица измерения Величина
Расход генераторного газа нм3 1560
Состав генераторного газа:
CO % 20,2
H2 % 9,8
CH4 % 2,6
CO2 % 12,9
N2 % 54,5
Теплота сгорания сухого генераторного газа ккал/м3 1050
Влагосодержание генераторного газа г/нм3 100
Колебания теплоты сгорания генераторного газа ккал/м3 50
Температура генераторного газа перед горелочным устройством °C 300-350
Запыленность генераторного газа перед горелочным устройством г/м3 1,5
Давление генераторного газа перед горелкой кПа 1,5
Годовой фонд рабочего времени основного технологического оборудования при двухсменной 7-дневной неделе ч 6000

Способ получения генераторного газа из растительного сырья, включающий вертикальную загрузку материала в реактор, газификацию и пиролиз в объеме реактора, имеющего зону сужения, тангенциальную подачу предварительно нагретого потока воздуха в зону газификации и многоструйную радиальную подачу нагретого воздуха в зону пиролиза, осуществляемую через перфорацию, отличающийся тем, что газ получают в горизонтальном реакторе, топливо в камеру газификации подают сверху по касательной к внутренней стенке реактора, многоструйную подачу воздуха в зону пиролиза осуществляют через перфорацию зоны сужения, полученную газовзвесь завихряют, газификацию осуществляют при температуре 500-600°C, пиролиз - при температуре 600-700°C при коэффициенте избытка воздуха 0,25-0,42, при этом расход воздуха регулируют таким образом, чтобы в зоне газификации он в 3-5 раз превышал расход в зоне пиролиза и зоне сужения реактора.



 

Похожие патенты:
Изобретение относится к области переработки отходов. .

Изобретение относится к энергетике и может быть использовано в установках для газификации влажного топлива, в частности отходов деревообрабатывающей промышленности.

Изобретение относится к области переработки углеродосодержащих твердых веществ, промышленных отходов различных отраслей экономики в альтернативные энергетические ресурсы, используемые как для промышленных, так и для бытовых нужд.

Изобретение относится к плазмотермической переработке и утилизации твердых и жидких промышленных и сельскохозяйственных отходов (биомассы), позволяющей преобразовать углеродсодержащие соединения и воду в плазмогаз, и может быть использовано в энергетике, на предприятиях химической промышленности, при переработке твердых бытовых отходов.
Изобретение относится к области утилизации отходов животноводства, сельского и лесного хозяйств и может быть использовано в энергетике. .

Изобретение относится к переработке органических материалов методом термической переработки без кислорода для получения пиролизного газа и пиролизного топлива и может быть использовано для переработки отходов животноводства и птицеводства в сельском хозяйстве и обеспечения теплом и энергией ЖКХ при переработке бытовых отходов.

Изобретение относится к переработке твердых бытовых отходов (ТБО) с целью получения горючего газа (термогаза). .

Изобретение относится к термической переработке углеродосодержащих отходов и может быть использовано в коммунальном хозяйстве городов. .

Изобретение относится к технологии получения синтез-газа, который может быть использован в нефтехимии для получения моторных топлив. .

Изобретение относится к способу получения жидкого углеводородного продукта (1), такого как биотопливо, из твердой биомассы (2). .

Изобретение относится к производству текучего вещества, включающего синтетический газ, путем частичного окисления углеродистой топливной смеси. .

Изобретения могут быть использованы в области промышленной переработки горючих углерод- и углеводородсодержащих продуктов. Способ переработки горючих углерод- и/или углеводородсодержащих продуктов включает последовательную послойную переработку шихты в реакторе в присутствии катализатора. В реакторе шихта сверху вниз проходит зоны нагрева продуктов переработки (9), пиролиза (8), коксования (7), горения (6) с образованием твердого остатка, который выгружают из зоны выгрузки твердых остатков переработки (2) с выгрузным окном (3) из рабочего пространства реактора циклически с сохранением его герметичности. Герметичная рабочая камера (1) реактора содержит зону подвода влажных мелких частиц отходов твердых топлив и их пиролиза и коксования (14), совмещенную с зонами подвода (4) и нагрева (5) кислородсодержащего агента. Канал подвода кислородсодержащего агента (15) соединен с бункером-дозатором (16) влажных мелких частиц отходов твердых топлив, из которых в зоне (14) реактора формируется псевдоожиженный поток. В реактор вводят дополнительное количество кислородсодержащего агента в составе основного потока, необходимое для последующего горения мелких частиц отходов твердых топлив, прошедших зоны пиролиза (8) и коксования (7), и перевода их влаги в перегретый пар. Изобретения осуществляют полную утилизацию мелких фракций продуктов переработки, позволяют получить высококалорийный газ и увеличить выход и качество готовых продуктов. 2 н. и 4 з.п. ф-лы, 1 ил., 2 табл., 1 пр.
Наверх