Способ выделения русловых потоков с помощью анализа цифровых спектрозональных космических снимков


 


Владельцы патента RU 2469270:

Учреждение Российской академии наук Институт тектоники и геофизики им. Ю.А. Косыгина Дальневосточного Отделения РАН (ИТиГ ДВО РАН) (RU)

Изобретение относится к области экологии, может быть использовано для прогноза распределения возможных техногенных загрязнителей и выбора участков строительства водозаборов водоснабжения в руслах крупных рек. Техническим результатом является повышение качества визуализируемых данных по дифференцированию потоков в русле реки, формирующихся под влиянием крупных притоков. Способ включает составление сводной «мозаики» космоснимков на всю исследуемую территорию, перевод полученного сводного файла в ГИС MapInfo, преобразование трех наиболее информативных каналов зон спектра снимков в цветовой стандарт RGB, перевод полученного цветного композитного изображения из формата HDF в стандартный растровый формат TIF, а картографической проекции космоснимков - в метрическую проекцию Гаусса-Крюгера, экспорт данных в ГИС MapInfo и визуальный анализ полученных данных в ГИС MapInfo совместно с современной картой гидрографических объектов зоны исследований. Указанный способ обеспечивает снижение трудоемкости и финансовых затрат, а также возможность прогнозирования распределения возможных техногенных загрязнений в русле реки. 1 ил.

 

Изобретение относится к области экологии, может быть использовано для прогноза распределения возможных техногенных загрязнителей и выбора участков строительства водозаборов водоснабжения в руслах крупных рек.

Известен способ измерения параметров реки путем разделения и измерения основного русла реки вдоль течения реки от истока до первого и последующего притоков вплоть до устья. После измерений вычисляют расчетные гидрологические параметры основного русла. Технический результат - повышение точности привязки результатов этих измерений к поведению основного русла реки в весеннее половодье [1].

Указанный способ трудоемок и сложен из-за необходимости производства большого количества наземных измерений.

Известен способ регулирования неустойчивого русла реки путем выправления стрежня потока реки и поддержание его в стабильном положении установкой неразмываемых шпор, выполнением русловых прорезей и разработкой наносов в подводящих каналах с последующим намывом их в береговые отвалы [2].

Однако известный способ не позволяет наглядно показать распределение водных потоков в русле реки.

Наиболее близким по достигаемому результату является способ экологической оценки речной сети по численности водотоков, включающий построение гидрографической схемы речной сети и оценку экологического качества реки [3].

Способ не обеспечивает качественную идентификацию и визуализацию водных потоков в русле реки.

Технический результат - повышение качества визуализируемых данных по дифференцированию потоков в русле реки, формирующихся под влиянием крупных притоков.

Технический результат достигается тем, что в способе выделения русловых потоков с помощью анализа цифровых спектрозональных космических снимков, включающем составление сводной «мозаики» космоснимков на всю исследуемую территорию, перевод полученного сводного файла в ГИС MapInfo, преобразование трех наиболее информативных каналов зон спектра снимков в цветовой стандарт RGB, перевод полученного цветного композитного изображения из формата HDF в стандартный растровый формат TIF, а картографической проекции космоснимков - в метрическую проекцию Гаусса-Крюгера, экспорт данных в ГИС MapInfo и визуальный анализ полученных данных в ГИС MapInfo совместно с современной картой гидрографических объектов зоны исследований.

Совокупность новых существенных признаков позволяет решить новую техническую задачу - повышение качества визуализируемых данных по дифференцированию потоков в русле реки, формирующихся под влиянием крупных притоков.

На фиг.1 - пример схемы русловых потоков, формирующихся в русле р.Амур под влиянием крупных притоков Сунгари и Уссури в районе г.Хабаровска.

Способ выполняется следующим образом.

Выделение зон влияния притоков в структуре водного потока основного русла производится с помощью анализа цифровых спектрозональных космических снимков в формате HDF, в картографической проекции Меркатора (UTM, зона 53) на референц-эллипсоиде WGS-84.

Из набора снимков с помощью программы ERDAS Imagine составляется сводная «мозаика» на всю исследуемую территорию. Полученный сводный файл переводится в ГИС MapInfo для обеспечения возможности комплексного использования разнородных картографических материалов в едином информационном пространстве. Для этого три наиболее информативных канала зон спектра снимков без потери качества информации преобразуются в цветовой стандарт RGB: канал 5 (1,55-1,75 мкм) в R (оттенки красного), канал 4 (0,75-0,90 мкм) в G (оттенки зеленого) и канал 3 (0,63-0,68 мкм) в В (оттенки синего). Полученное цветное композитное изображение переводится из формата HDF в стандартный растровый формат TIF. Картографическая проекция космоснимков преобразуется из UTM 53 зоны на WGS-84 в метрическую проекцию Гаусса-Крюгера, зоны 23 и данные экспортируются в ГИС MapInfo. Точность полученного цветного композитного изображения составляет порядка 15 м/пиксел.

Дальнейшая работа заключается в визуальном анализе полученных данных в ГИС MapInfo совместно с современной картой гидрографических объектов зоны исследований. Зоны влияния (русловые потоки), формирующиеся под воздействием крупных притоков, отчетливо различаются в основном русле по фототону космоснимков.

Способ обеспечивает снижение трудоемкости и финансовых затрат, а также возможность прогнозирования распределения возможных техногенных загрязнителей в русле реки.

Источники информации

1. Патент РФ №2410644, «Способ измерения параметров реки».

2. Патент РФ №2088723, «Способ регулирования неустойчивого русла реки».

3. Заявка на изобретение №2008101141, «Способ экологической оценки речной сети по численности водотоков».

Способ выделения русловых потоков с помощью анализа цифровых спектрозональных космических снимков, включающий составление сводной «мозаики» космоснимков на всю исследуемую территорию, перевод полученного сводного файла в ГИС MapInfo, преобразование трех наиболее информативных каналов зон спектра снимков в цветовой стандарт RGB, перевод полученного цветного композитного изображения из формата HDF в стандартный растровый формат TIF, а картографической проекции космоснимков - в метрическую проекцию Гаусса-Крюгера, экспорт данных в ГИС MapInfo и визуальный анализ полученных данных в ГИС MapInfo совместно с современной картой гидрографических объектов зоны исследований.



 

Похожие патенты:

Изобретение относится к области океанографических измерений, в частности к способам измерения высоты волнения и угла наклона водной поверхности, и может быть использовано в океанологии для изучения волновых процессов на поверхности океана.

Изобретение относится к неконтактным океанографическим измерениям и может быть использовано для определения статистических характеристик морского волнения с борта движущегося судна.
Изобретение относится к определению параметров ледяного покрова посредством устройства для измерении толщины льдин, установленного на носителе, и может быть использовано как в исследовательских целях, так и при мониторинге ледового покрова в регионах залегания и добычи месторождений газа и нефти на шельфе арктических морей.

Изобретение относится к области картографии, а более конкретно к составлению ледовых карт, полученных путем съемки ледовых образований, посредством технических средств, установленных на летательных аппаратах.

Изобретение относится к области приборостроения и может найти применение для обнаружения с авиасредств экологически опасных нефтяных загрязнений в море в сложных метеорологических условиях, в частности при низкой облачности, при тумане и в условиях полярной ночи.

Изобретение относится к инженерной экологии и может быть использовано при исследованиях рек и их притоков. .

Изобретение относится к области океанографических измерений, в частности к способам измерения углов наклона и высоты волнения водной поверхности, и может быть использовано в океанологии для изучения волновых процессов на поверхности океана и в метеорологии для повышения точности долгосрочных прогнозов погоды.

Изобретение относится к геодезической сети, опорным геодезическим пунктам, взаимное положение и высота которых определены в принятой системе координат. .

Изобретение относится к области океанографических измерений и позволяет синхронно измерять высоту h и углы наклона х и у волнения водной поверхности в одной точке

Изобретение относится к области измерительной техники и может быть использовано для измерения и регистрации морского волнения методом импульсной эхолокации узконаправленным лучом в направлении от дна к поверхности воды

Изобретение относится к области сельского и лесного хозяйств, а также к экологическому мониторингу. Способ включает выделение участка пойменного луга с испытуемым травяным покровом. Затем на этом участке по течению малой реки или ее притока размечают не менее трех створов измерений в поперечном направлении. Вдоль каждого створа размечают не менее трех пробных площадок с каждой стороны малой реки или ее притока. После разметки измеряют расстояния от принятого начала координат на одной стороне малой реки или ее притока до центров пробных площадок. Кроме этого, измеряют высоту расположения центра каждой пробной площадки от поверхности малой реки или ее притока. После срезки пробы травы подвергают испытаниям и по результатам испытаний выявляют закономерности влияния расстояния вдоль каждого створа, высоты расположения пробных площадок над урезом воды на биофизические и биохимические показатели проб травы. После испытания проб срезанной травы пойменного луга на биофизические показатели по массе и времени высыхания в зависимости от параметров рельефа в створах измерений часть высушенной пробы отбирается для озоления и последующего биохимического анализа, по меньшей мере, по трем биохимическим веществам: азоту, фосфору и калию. Способ позволяет повысить возможность сравнения проб травы на различных учетных площадках по содержанию питательных биохимических веществ в виде азота, фосфора и калия. 5 з.п. ф-лы, 7 ил., 16 табл., 1 пр.

Изобретение относится к области ландшафтоведения и лесоводства. Способ включает в пределах водоохранной зоны визуально по карте или натурно выделение участка луга с испытуемым травяным покровом, затем на этом участке по течению водотока разметку группы пробных площадок, учет расстояния между центрами пробных площадок вдоль и поперек реки, а после срезки испытания проб травы. Участок луга с испытуемым травяным покровом выделяют на незатопляемой территории с прибрежной грунтовой дорогой параллельно берегу. Причем с другой стороны луга расположена стена леса. Затем на выбранной части луга выделяют мозаичные части по шкале качества травяного покрова. Причем на каждой мозаичной части намечают по меньшей мере одну пробную площадку размерами 2,00×2,00 м. После этого намечают створы наблюдений по пробным площадкам перпендикулярно грунтовой дороге. До испытаний сразу же после срезки пробу взвешивают на переносных весах около пробной площадки. После срезки намечают центр пробной площадки, затем измеряют расстояния между центрами пробных площадок со срезанной травой. Также измеряют расстояния от края грунтовой дороги, расположенного в сторону леса, до центров пробных площадок со срезанной травой по створам измерений. После этого вычисляют расстояния от стены леса до центров этих же пробных площадок. Все измеренные данные заносят в журнал, которые совместно с вычисленными данными применяют для оценки урожайности луговой травы по сырой массе в зависимости от влияния расстояний от края дороги и от стены леса до центров пробных площадок со срезанной травой. Способ позволяет повысить точность измерений свойств травы прибрежного луга, находящегося между прибрежной грунтовой дорогой и стеной леса, и повысить функциональные возможности при выявлении закономерностей влияния стены леса и прибрежной грунтовой дороги на урожайность луговой травы. 4 з.п. ф-лы, 10 ил., 1 табл., 1 пр.

Изобретение относится к области гидрографии и может быть использовано для гидрографической оценки речной сети. Сущность: определяют количество притоков реки. Уточняют длину каждого притока по результатам полевых или иных измерений. Строят гидрографические схемы речной сети. Распределяют значения длин притоков по группам. Выделяют антропогенно измененные части речной сети. Выделяют по всей речной сети и на ее частях фрактальные группы по примыканию притоков. Присваивают фрактальным группам ранги. Составляют таблицы рангов фрактальных групп и длин притоков. Определяют по табличным данным, применяя экспоненциальный закон, среднестатистическое изменение длины притоков в зависимости от ранга фрактальных групп. Технический результат: повышение точности оценки. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля загрязнения поверхности открытых водоемов при проведении экологических и природоохранных мероприятий. Технический результат изобретения - повышение вероятности обнаружения загрязнения и снижение вероятности ложных тревог за счет разделения на радиолокационных изображениях участков, созданных поверхностным загрязнением, и участков, созданных вариациями поверхностного течения. Сущность: контролируемую область поверхности облучают под азимутальным углом α1, регистрируют рассеянный назад сигнал и по изменению уровня сигнала выявляют аномальный участок поверхности, от которого рассеянный назад сигнал имеет более низкий уровень по сравнению с фоновым значением сигнала. Затем контролируемую область облучают под азимутальным углом α2 при том же угле падения радиоволн и регистрируют рассеянный назад сигнал от аномального и фонового участков. Определяют отношение сигналов от аномального участка, полученных при облучении под азимутальными углами α1 и α2, и отношение сигналов от фонового участка, полученных при облучении под азимутальными углами α1 и α2. Путем сравнения полученных отношений сигналов определяют наличие загрязнения исследуемой поверхности.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля загрязнения поверхности открытых водоемов при проведении экологических и природоохранных мероприятий. Технический результат - обеспечение возможности учитывать влияние длинных, по сравнению с брегговскими компонентами, поверхностных волн на характеристики рассеяния радиоволн, по которым оценивают изменения в пространстве спектра поверхностных волн, что повышает достоверность определения загрязнения акватории. Сущность: контролируемую область морской поверхности облучают одновременно радиоволнами разной длины с помощью скаттерометра и альтиметра, которые размещены на двух летательных аппаратах. Скаттерометр облучает контролируемую поверхность под углом, при котором регистрируемый сигнал определяет брегтовский механизм рассеяния. Он излучает по всем каналам сигнал одной и той же поляризации и регистрирует сигнал той же поляризации. Альтиметр облучает контролируемую поверхность в надир, и по его данным определяют дисперсию уклонов морской поверхности, создаваемых волнами разных масштабов. По зарегистрированным скаттерометром сигналам и с учетом полученной дисперсии уклонов морской поверхности вычисляют значения спектра поверхностных волн на длине резонансной волны. Анализируют изменения в пространстве спектра поверхностных волн и по характеру этих изменений судят о загрязнении.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля изменения состояния поверхности открытых водоемов, вызванного их загрязнением поверхностно-активными веществами, при проведении экологических и природоохранных мероприятий. Техническим результатом изобретения является возможность при осуществлении анализа характеристик бликов зеркального отражения учитывать фактор влияния, ветра, что обеспечивает повышение точности определения наличия загрязнения, а также степени его интенсивности. Согласно изобретению поверхность облучают лазером, регистрируют блики зеркального отражения и определяют их характеристики. При этом одновременно с регистрацией бликов измеряют скорость ветра, а уровень загрязнения определяют путем сравнения полученных характеристик с образцовыми значениями для измеренной скорости ветра. 3 ил.

Изобретение относится к области океанографических измерений и предназначено преимущественно для определения характеристик коротких морских ветровых волн. Технический результат изобретения - повышение точности измерений за счет устранения фактора воздействия водного потока на струнные волнографические датчики, что обеспечивает их неподвижность даже в условиях штормового моря, а также за счет уменьшения длины погруженной в воду части штанги, несущей волнографические датчики, и одновременно с этим - обеспечения требуемого заглубления датчиков. Сущность: устройство содержит установленный над водной поверхностью выстрел с вертикальной штангой, пересекающей границу раздела воздух-вода. На штанге закреплены горизонтальные, по крайней мере три, кронштейны. Верхний кронштейн закреплен вверху штанги, нижний - внизу, на уровне максимальной впадины исследуемых волн. Кронштейны служат для постановки струнных волно-графических датчиков, которые верхними концами жестко закреплены на верхнем кронштейне и пропущены через отверстия, выполненные в остальных кронштейнах. Нижние концы датчиков снабжены грузами для необходимого натяжения датчиков. Отверстия кронштейнов обеспечивают вертикальное положение датчиков на заданном расстоянии друг от друга. 1 ил.

Изобретение относится к области гидрологии и может быть использовано при мониторинге, моделировании, количественной оценке водных ресурсов. Сущность: реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ. Вычисляют количество квадратов N, покрывающих реку и каждый ее приток, для вычисления фрактальной размерности. Затем на основании вычисленной фрактальной размерности рассчитывают коэффициент извилистости русла реки и длину реки. Технический результат: определение коэффициента извилистости русла реки. 2 табл.
Наверх