Способ определения коэффициента диффузии жидкости в капиллярно-пористом теле



Способ определения коэффициента диффузии жидкости в капиллярно-пористом теле

 


Владельцы патента RU 2469292:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)

Изобретение относится к теоретической теплотехнике и может быть использовано для определения коэффициента диффузии жидкости в материалах, имеющих капиллярно-пористую структуру. Предлагаемый способ заключается в определении коэффициента диффузии жидкости в капиллярно-пористом теле на основе аналогии с методом регулярного теплового режима. При этом для отыскания темпа регулярного режима влагопереноса капиллярно-пористое тело погружают в воду и регистрируют изменение с течением времени его массы. По результатам эксперимента строят зависимость натурального логарифма избыточной массы от времени, характеризуемую тем, что опытные точки на графике сгруппированы около прямой линии, а тангенс угла наклона этой прямой к оси абсцисс на графике численно равен значению темпа регулярного режима влагопереноса. Техническим результатом изобретения является определение коэффициента диффузии жидкости в капиллярно-пористом теле, необходимого для оптимизации и повышения энергоэффективности технологических процессов сушки материалов, имеющих капиллярно-пористую структуру. 1 ил.

 

Изобретение относится к теоретической теплотехнике и может быть использовано для определения коэффициента диффузии D жидкости в материалах, имеющих капиллярно-пористую структуру.

В капиллярно-пористых телах процесс тепломассообмена в значительной степени усложняется в условиях изменения влагосодержания в поровом пространстве. При моделировании тепловлажностного состояния капиллярно-пористого тела учет особенностей материала, таких как размер пор, их форма, расположение выполняют интегрально через определение эффективных свойств.

Известен способ (см. патент РФ №2212027. Опубл. 10.09.2003), включающий нанесение пленки диффундирующего элемента на поверхность металла, стимулирующее диффузию воздействия, определение изменения концентрации элемента в металле и расчет коэффициента диффузии элемента по концентрационной зависимости.

Недостатком данного способа является невозможность определения коэффициента диффузии у капиллярно-пористых тел.

Известен способ (см. патент РФ №2398214. Опубл. 27.08.2010), основанный на анализе цифрового изображения плоскопараллельной вертикальной ячейки с неоднородным распределением концентрации, позволяющий определить коэффициент диффузии окрашенных растворов различных веществ.

Недостатком данного способа является неточность определения коэффициента диффузии, так как не учитывается пористое внутреннее строение тел.

Наиболее близким по техническому решению является способ регулярного теплового режима, включающий нахождение линейной зависимости натурального логарифма избыточной температуры от времени. Угол наклона прямой характеризуется коэффициентом m - темпом регулярного режима [см. Теплопередача. - Исаченко В.П., Осипова В.А., Сукомел А.С. Учебник для вузов. Изд. 3-е, перераб. и доп. - М.: «Энергия», 1975 г. - 488 с.]. Этот способ служит основой для достаточно простого определения теплофизических свойств материалов и коэффициентов теплоотдачи.

Недостатком данного способа является определение темпа регулярного режима лишь при теплопроводности.

Общим признаком прототипа и предлагаемого решения является нахождение коэффициента m - темпа регулярного режима путем построения зависимости натурального логарифма избыточных измеряемых величин от времени, а также нахождения K - коэффициента формы тела.

Техническим результатом предлагаемого способа является определение коэффициента диффузии жидкости в капиллярно-пористом теле, необходимого для оптимизации и повышения энергоэффективности технологических процессов сушки материалов, имеющих капиллярно-пористую структуру.

Сущность способа поясняется фиг.1, где приведены результаты определения темпа регулярного режима влагопереноса, где о - экспериментальные данные; сплошная линия - линейная аппроксимирующая зависимость.

Предлагаемый способ заключается в том, что коэффициент диффузии D жидкости в капиллярно-пористом теле в рассматриваемых условиях является параметром-аналогом коэффициента температуропроводности. Коэффициент диффузии D жидкости в капиллярно-пористом теле определяется экспериментально на основе аналогии с методом регулярного теплового режима по выражению:

где K - коэффициент формы тела; m - темп регулярного режима влагопереноса.

Коэффициент формы тела K определяется аналогично методу регулярного теплового режима. Так, например, для тела в виде прямоугольного параллелепипеда размерами а×b×с имеем [см. Теплопередача. - Исаченко В.П., Осипова В.А., Сукомел А.С. Учебник для вузов. Изд. 3-е, перераб. и доп. - М.: «Энергия», 1975 г. - 488 с.]:

Для отыскания темпа регулярного режима влагопереноса m осушенное капиллярно-пористое тело погружают в воду и определяют изменение с течением времени его массы, которая однозначно связана со средним влагосодержанием. По результатам эксперимента строят зависимость натурального логарифма избыточной массы (разности максимальной массы тела после его длительного пребывания в воде и массы в текущий момент времени, отсчитываемый от начала погружения) от времени. На полученной зависимости выделяют стадию регулярного режима влагопереноса, характеризуемую тем, что опытные точки на графике сгруппированы около прямой линии. Тангенс угла наклона этой прямой к оси абсцисс на графике численно равен значению темпа регулярного режима влагопереноса m. Далее по формуле (1) рассчитывают коэффициент диффузии D.

По предлагаемому способу определен коэффициент диффузии D жидкости для красного строительного кирпича. Результаты эксперимента с пятью экземплярами кирпича для стадии регулярного режима влагопереноса приведены на фиг.1. При обработке полученных результатов были определены значения K=3,191·10-4 м2; m=4·10-4 c-1; D=1,28·10-8 м2/с. Относительная погрешность определения коэффициента диффузии, приведенная к доверительной вероятности 0,95, составляет ±5%.

Способ определения коэффициента диффузии жидкости в капиллярно-пористом теле, включающий погружение в воду капиллярно-пористого тела и определение изменения с течением времени его массы, отличающийся тем, что по результатам эксперимента строят зависимость натурального логарифма избыточной массы от времени, на полученной зависимости выделяют стадию регулярного режима влагопереноса, характеризуемую тем, что опытные точки на графике сгруппированы около прямой линии, определяют тангенс угла наклона этой прямой к оси абсцисс на графике, который численно равен значению темпа регулярного режима влагопереноса, затем вычисляют коэффициент диффузии жидкости в капиллярно-пористом теле по формуле:
D=Km,
где K - коэффициент формы тела;
m - темп регулярного режима влагопереноса.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности. .
Изобретение относится к области исследований параметров грунтов, а конкретней к способам определения коэффициента фильтрации плывунного грунта. .

Изобретение относится к способу измерения газопроницаемости тары вообще, такой, как бутылки, пакеты различных форм или также мембран и иных уплотнительных элементов, таких, как крышки.

Изобретение относится к устройству и способу определения проницаемости газа через стенки тары, в основном тары для промышленной продукции, например тары из полимерной пленки для пищевых, химических, фармацевтических, электронных продуктов и т.п.

Изобретение относится к области физико-химического применения, а именно к способам и устройствам для определения десорбционной ветви изотерм адсорбции кислорода при изменениях температуры от 20 до 500°С динамическим методом тепловой десорбции.

Изобретение относится к области исследования защитных свойств пакетов фильтрующих материалов средств индивидуальной защиты кожи (СИЗК) на основе активированных углеродсодержащих сорбентов (АУС) в динамических условиях.

Изобретение относится к нефтедобывающей отрасли, а именно к повышению достоверности определения относительных фазовых проницаемостей и коэффициента вытеснения нефти рабочим агентом.

Изобретение относится к исследованию свойств и характеристик образцов горных пород и может быть использовано для определения фазовой проницаемости при фильтрации двух несмешивающихся жидкостей через пористые среды.

Изобретение относится к области офтальмологии и направлено на обеспечение возможности исследования рабочих характеристик офтальмологических линз в условиях окружающей глаз среды, что обеспечивается за счет того, что устройство для исследования офтальмологической линзы содержит вставную форму и охватывающую форму, где указанная вставная форма содержит выпуклую поверхность для исследования, наружную вставную поверхность, вставной опорный ориентирующий выступ, проходящий от периметра выпуклой поверхности для исследования, и отверстие, проходящее от наружной вставной поверхности к выпуклой поверхности для исследования.

Изобретение относится к исследованию процессов многофазной фильтрации жидкостей и газов в пористой среде, в частности к вытеснению нефти водой, и может быть использовано для нахождения относительных фазовых проницаемостей (ОФП) и функции Баклея.

Изобретение относится к области нефтяной геологии и является петрофизической основой объемного моделирования нефтенасыщенности, подсчета балансовых и извлекаемых запасов залежи дифференцированно, с учетом предельно нефтенасыщенной и переходной зон, для прогнозирования результатов опробования и анализа разработки

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п

Изобретение относится к области исследования строительных материалов и контрольно-измерительной технике, и может быть использовано для определения пористости керамических и силикатных материалов

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д

Изобретение относится к контролю качества бетонов, растворов и цементного камня

Изобретение относится к петрофизическим методам определения свойств пород и может быть использовано в нефтяной геологии для определения смачиваемости пород-коллекторов нефти и газа

Изобретение относится к области исследования структуры порового пространства горных пород и предназначено для определения латеральной анизотропии фильтрационных свойств терригенного коллектора по результатам исследования его керна

Изобретение может быть использовано при разработке месторождений углеводородов. Устройство для оценки динамики процесса прямоточной капиллярной пропитки образцов пород относится к области петрофизических исследований. Устройство предназначено для определения динамики изменения веса образца породы в процессе капиллярной прямоточной пропитки и расчета на основе полученных данных некоторых петрофизических параметров, в частности количества защемленного газа. В устройстве реализовано автоматическое сохранение уровня контактирующей с образцом жидкости без жесткой или упругой связи с буферной емкостью, подпитывающей водой образцовую камеру. Это позволяет проводить, практически без погрешности, постоянное взвешивание образцовой камеры с образцом, который в процессе впитывания воды за счет капиллярного насыщения постоянно увеличивает свой вес. Данные изменения веса во времени, зафиксированные электронными весами, обрабатываются с помощью компьютера. Техническим результатом является повышение точности оценки динамики насыщения породы за счет гидродинамической связи образцовой камеры и буферной емкости. 1 з.п. ф-лы, 2 ил.
Наверх