Способ информационного обеспечения вихревой безопасности полета летательных аппаратов

Предлагаемое изобретение может быть использовано для предупреждения о возможности попадания летательного аппарата (ЛА) в зону вихревого следа. Сущность изобретения состоит в том, что способ информационного обеспечения вихревой безопасности полета летательных аппаратов характеризуется осуществлением радиосвязи «борт-борт» и «борт-система управления воздушным движением (УВД)» в радиовещательном режиме и/или в режиме «точка-точка» с передачей информации каждым ЛА-генератором вихревого следа о параметрах создаваемого ими вихревого следа, получаемых путем измерений и/или расчета в самолетной системе координат ЛА-генератора вихревого следа, приемом этой информации каждым другим ЛА и/или системой УВД, являющимися абонентами, находящихся в зоне доступности передатчика соответствующего ЛА-генератора вихревого следа, последующим расчетом в системе координат абонентов последствий воздействия этого вихревого следа и анализом этой информации абонентами, при этом в передаваемую информацию ЛА-генератора вихревого следа включают данные параметров вихревого следа в самолетных координатах этого ЛА, а также сообщают скорость, направление полета ЛА-генератора вихревого следа и время передачи им информации, а принимающие информацию абоненты оценивают возможность прохождения зоны создаваемого ЛА-генератором вихревого следа ориентируясь на время существования вихревого следа, и, в случае необходимости, проводят измерения характеристик атмосферы и/или учитывают поступающие от системы УВД данные, необходимые для соответствующего расчета вихревого следа. При этом время существования создаваемого ЛА-генератором вихревого следа определяют по величине времени Т его турбулентной диффузии, которое определяют из соотношения: T=π4ρVL3/4G, где ρ - плотность воздуха, V - скорость полета, L - размах крыла самолета, b - расстояние между вихрями следа, G - вес самолета. Достигаемым техническим результатом изобретения является повышение безопасности полета ЛА за счет оповещения о возможности попадания соответствующего ЛА в зону вихревого воздействия. 2 з.п. ф-лы.

 

Предлагаемое изобретение относится к системам, использующим отражение волн различной природы, и может быть использовано для предупреждения о возможности попадания летательного аппарата (ЛА) в зону вихревого следа.

Известен способ мониторинга окружающего пространства (см., например, «Система вихревой безопасности аэропортов», http://www.lsystems.ru/catalog/spec_systems/safety_aeroport/ от 07.02.2011), включающий зондирование произвольно выбранного сектора обзора с помощью доплеровского лидара.

Известный способ обеспечивает возможность получения информации об интенсивности и динамике вихревых следов за ЛА, а также об интенсивности турбулентности в вихревых следах, профиле турбулентности и о пространственном распределении компонент скорости ветра, однако для его применения в полетных условиях необходимо установка на борту соответствующей аппаратуры.

Наиболее близким аналогом-прототипом является способ предупреждения о возможности попадания ЛА в опасную зону вихревого следа (см., например, патент РФ №2324203 с приоритетом от 25.07.2003, МПК G01S 13/95), включающий получение информации о конфигурации, местонахождении и ориентации ЛА относительно инерциальной системы координат в текущий момент времени, получение и сохранение информации о параметрах движения генератора вихрей (ГВ) и его положении, геометрических и массовых характеристиках относительно той же системы координат в текущий момент времени, получение информации о параметрах окружающей среды в области совместного размещения ЛА и ГВ, определение траектории и интенсивности вихревого следа ГВ как совокупности траекторий центров областей завихренности, генерируемых указанным ГВ, в инерциальной системе координат в текущий момент времени, сохранение информации о координатах точек траектории и интенсивности вихревого следа ГВ как совокупности траекторий центров областей завихренности в инерциальной системе координат, выбор времени упреждения, в течение которого ЛА может, по меньшей мере, выполнить маневр изменения траектории полета, обеспечивающий уклонение ЛА от вихревого следа ГВ после предупреждения о возможности попадания в него, вычисление упреждающего расстояния, равного расстоянию, преодолеваемому ЛА за время упреждения, моделируют контрольную плоскость, расположенную в пространстве перед ЛА, и определяют прогнозируемый момент времени пролета ЛА через указанную контрольную плоскость в инерциальной системе координат, а также осуществляют для пользователя индикацию события равенства нулю расстояния до опасной зоны вихревого следа указанного ГВ.

Известный способ позволяет организовать систему управления воздушным движением с обеспечением информирования пользователя о возможности опасной полетной ситуации, однако его реализация потребует создания объединенных в единую информационную систему систем предупреждения, размещенных на ЛА, кораблях, аэродромах и т.д., что сопряжено с необходимостью значительных финансовых затрат и в ряде случаев нецелесообразно.

Задача изобретения состоит в разработке способа информационного обеспечения вихревой безопасности полета ЛА, позволяющего предупреждать пилотов об опасности попадания в вихревой след впереди следующего ЛА.

Сущность изобретения состоит в том, что способ информационного обеспечения вихревой безопасности полета летательных аппаратов характеризуется осуществлением радиосвязи «борт-борт» и «борт-система управления воздушным движением (УВД)» в радиовещательном режиме и/или в режиме «точка-точка» с передачей информации каждым ЛА-генератором вихревого следа о параметрах создаваемого ими вихревого следа, получаемых путем измерений и/или расчета в самолетной системе координат ЛА-генератора вихревого следа, приемом этой информации каждым другим ЛА и/или системой УВД, являющимися абонентами, находящимися в зоне доступности передатчика соответствующего ЛА-генератора вихревого следа, последующим расчетом в системе координат абонентов последствий воздействия этого вихревого следа и анализом этой информации абонентами, при этом в передаваемую информацию ЛА-генератора вихревого следа включают данные параметров вихревого следа в самолетных координатах этого ЛА, а также сообщают скорость, направление полета ЛА-генератора вихревого следа и время передачи им информации, а принимающие информацию абоненты оценивают возможность прохождения зоны создаваемого ЛА-генератором вихревого следа, ориентируясь на время существования вихревого следа, и, в случае необходимости, проводят измерения характеристик атмосферы и/или учитывают поступающие от системы УВД данные, необходимые для соответствующего расчета вихревого следа.

При этом время существования создаваемого ЛА-генератором вихревого следа определяют по величине времени Т его диффузии, которое определяют из соотношения:

Т=π4ρVL3/4G,

где ρ - плотность воздуха, V - скорость полета, L - размах крыла самолета, G - вес самолета.

Техническим результатом предлагаемого изобретения является повышение безопасности полета ЛА за счет оповещения о возможности попадания соответствующего ЛА в зону вихревого воздействия.

При полете в атмосфере ЛА создает вихревой след, который может представлять опасность для других ЛА. Эта проблема актуальна также и для аэропортов при организации взлета-посадки самолетов.

Предлагаемый способ информационного обеспечения полета ЛА предполагает решение этой проблемы за счет информирования заинтересованных пользователей воздушного пространства о месте и времени возникновения вихревой обстановки и выявления ими приближения опасности путем анализа полученной информации о параметрах этой вихревой обстановки, координатах ее формирования и перемещения, а также путем соответствующего измерения характеристик атмосферы в зоне предполагаемого нахождения соответствующего пользователя.

При этом измерения характеристик атмосферы в соответствующей зоне аэропорта можно производить путем использования, например, комплекса автономных лидарных модулей, включающего доплеровский лидар дальнего действия, лазерно-доплеровский сканер вихревых следов, а также доплеровский лазерный измеритель вертикального профиля ветра, позволяющего получать информацию о таких параметрах, как: вертикальный профиль скорости ветра и пространственное распределение вертикальной компоненты скорости ветра, профиль турбулентности и интенсивность турбулентности в вихревых следах, интенсивность и динамика вихревых следов за летательными аппаратами и др. (см., например, «Системы вихревой безопасности аэропортов», http://www.lsystems.ru/catalog/ spec systems/safety aeroport/).

Измерения параметров атмосферных характеристик (температуры, давления и др.) можно производить непосредственно на ЛА с помощью соответствующих датчиков и бортового метеолокатора (см., например, http://rn.wikipedia.org/wiki/).

При этом заинтересованные пользователи воздушного пространства осуществляют радиосвязь «борт-борт» и «борт-система управления воздушным движением (УВД)» и каждый ЛА по радиовещательному каналу многостанционного доступа и/или по радиосвязи «точка-точка» передает информацию о создаваемой им вихревой обстановке (ВО) с включением в эту информацию данных о параметрах ВО в самолетных или в земных координатах передающего ЛА-генератора вихревого следа, получаемых путем соответствующих расчетов и/или измерений, а также сообщают время передачи, скорость и направление полета ЛА-генератора вихревого следа, в результате чего обеспечивается возможность приема этой информации каждым другим ЛА и/или наземными диспетчерскими пунктами аэродромных служб УВД, являющимися абонентами, находящимися в зоне доступности соответствующего передатчика, а также последующей обработки и анализа полученной информации абонентами, при этом принимающие информацию абоненты оценивают возможность прохождения зоны создаваемого ЛА-генератором вихревого следа ориентируясь на время диффузии вихревого следа, причем принимающие информацию ЛА и службы УВД, в случае необходимости, проводят измерения характеристик атмосферы соответственно при следовании этих ЛА в направлении возникновения указанной ВО и при прохождении ЛА-генератора вихревого следа в зоне безопасности соответствующего аэродрома.

Известно (см., например, Г.Г.Судаков «Математические модели и численные методы расчета характеристик спутных следов их воздействия на самолет». Автореферат диссертации на соискание ученой степени доктора технических наук, Москва, 2005, с.14-15, см. также В.В. Вышинский, Г.Г.Судаков «Вихревой след самолета и вопросы безопасности полетов» Труды МФТИ, 2009, том 1, №3, с.78), что сформировавшийся вихрь в процессе разрушения проходит две фазы: фазу турбулентной диффузии (диффузия вихря с малой скоростью - медленная диффузия) и последующей фазы быстрого разрушения, причем время ТД существования турбулентной диффузии может быть определено в виде:

ТД=(2÷8)t0, где t0=2πb20 и Г0= G/ρVb.

Здесь b=πL/4 - расстояние между вихрями следа (в предположении, что непосредственно за самолетом справедливо эллиптическое распределение циркуляции по размаху), Г0 - циркуляция вихрей на момент образования двухвихревой системы, при этом G [кг·м/сек-2] - вес самолета, ρ [кг·м-3] - плотность воздуха, V [м·сек-1] - скорость полета, L [м] - размах крыла.

Поскольку в соответствии с приведенными данными величина оценки верхней границы времени наступления второй фазы составляет 8 t0, величину Т длительности наиболее опасного периода диффузии вихревого следа с учетом вышеприведенных соотношений получаем в виде:

Т=π4ρVL3/4G,

где все обозначения соответствуют указанным ранее.

Здесь также следует иметь в виду, что величина циркуляции вихрей экспоненциально уменьшается в зависимости от времени их существования.

Таким образом, для каждого самолета величина его вихревого следа и время его разрушения в принципе могут быть подсчитаны и ретранслированы при радиосвязи для соответствующего ориентирования заинтересованных пользователей воздушного пространства.

Реализацию способа информационного обеспечения полета ЛА осуществляют следующим образом:

Находящиеся в воздухе ЛА осуществляют радиосвязь «борт-борт» и «борт-система управления воздушным движением (УВД)» по радиовещательному каналу многостанционного доступа и/или по радиосвязи «точка-точка» и передают информацию о создаваемой им вихревой обстановке (ВО) с включением в эту информацию данных о параметрах ВО и максимальном значении величины времени медленной диффузии формируемого передающим ЛА-генератором вихревого следа соответствующего вихревого следа в самолетных или в земных координатах этого ЛА-генератора вихревого следа, получаемых путем соответствующих расчетов и/или измерений, а также сообщают время передачи, скорость и направление полета ЛА-генератора вихревого следа.

После приема этой информации каждым другим ЛА и/или наземными диспетчерскими пунктами аэродромных служб УВД (управления воздушным движением), являющимися абонентами, находящимися в зоне доступности соответствующего передатчика, абоненты производят последующую обработку и анализ полученной информации, оценивают возможность прохождения соответствующим ЛА зоны создаваемого ЛА-генератором вихревого следа, ориентируясь на время диффузии вихревого следа и, в случае необходимости, определяемой, например, дистанцией между ЛА-генератором вихревого следа и абонентом, следующим в направлении этого вихревого следа, а также при прохождении ЛА-генератора вихревого следа в зоне безопасности соответствующего аэродрома проводят измерения характеристик атмосферы.

Учет времени диффузии вихревого следа ЛА-генератора вихревого следа повышает безопасность полета ЛА, следующих в направлении этого вихревого следа, но здесь необходимо также принимать во внимание наличие атмосферных факторов (например, наличия ветра, его направления и силы и др.), влияющих на изменение местонахождения вихревого следа.

Использование при радиосвязи воздушного пространства по радиовещательному каналу многостанционного доступа и/или по радиосвязи «точка-точка» выполняют с временным разделением каналов (см., например, «Разработка рекомендаций по созданию системы автоматического зависимого наблюдения взлета и посадки воздушных судов», Отчет о научно-исследовательской работе ФГУП «ГосНИИАС», 2010 г.) в виде комплексной системы связи и передачи данных путем обеспечения нескольких, например четырех, отдельных радиоканалов на одной несущей волне с частотной сеткой 25 кГц и модуляцией (номинально три речевых канала и один канал передачи данных). В первом случае осуществляется свободный доступ группы абонентов к каналу на основе принципа «слушай, прежде чем включать микрофон», а во втором - реализуется доступ к каналу с разрешения наземной станции по запросу борта.

1. Способ информационного обеспечения вихревой безопасности полета летательных аппаратов (ЛА), характеризующийся осуществлением радиосвязи «борт-борт» и «борт-система управления воздушным движением (УВД)» в радиовещательном режиме и/или в режиме «точка-точка» с передачей информации каждым ЛА - генератором вихревого следа о параметрах создаваемого ими вихревого следа, получаемых путем измерений и/или расчета в самолетной системе координат ЛА - генератора вихревого следа, приемом этой информации каждым другим ЛА и/или системой УВД, являющимися абонентами, находящимися в зоне доступности передатчика соответствующего ЛА - генератора вихревого следа, последующим расчетом в системе координат абонентов последствий воздействия этого вихревого следа и анализом этой информации абонентами, при этом в передаваемую информацию ЛА - генератора вихревого следа включают данные параметров вихревого следа в самолетных координатах этого ЛА, а также сообщают скорость, направление полета ЛА - генератора вихревого следа и время передачи им информации, а принимающие информацию абоненты оценивают возможность прохождения зоны создаваемого ЛА - генератором вихревого следа, ориентируясь на время существования вихревого следа, и, в случае необходимости, проводят измерения характеристик атмосферы и/или учитывают поступающие от системы УВД данные, необходимые для соответствующего расчета вихревого следа.

2. Способ информационного обеспечения вихревой безопасности полета ЛА по п.1, отличающийся тем, что время существования создаваемого ЛА - генератором вихревого следа определяют по величине времени его турбулентной диффузии.

3. Способ информационного обеспечения вихревой безопасности полета ЛА по п.2, отличающийся тем, что величину времени Т турбулентной диффузии создаваемого ЛА - генератором вихревого следа определяют из соотношения:
T=π4ρVL3/4G,
где ρ - плотность воздуха, V - скорость полета, L - размах крыла самолета, G - вес самолета.



 

Похожие патенты:

Изобретение относится к светотехнике, в частности к светосигнальным системам, предназначенным для ориентации в ночное время, в сумерках и сложных метеоусловиях пилотов летательных аппаратов (ЛА) при взлете, посадке и пробеге относительно оси взлетно-посадочной полосы (ВПП).

Изобретение относится к системам и средствам обеспечения посадки летательных аппаратов. .

Изобретение относится к способу и устройству управления летательными аппаратами. .

Изобретение относится к области радиолокационного оборудования летательных аппаратов (ЛА) и оборудования взлетно-посадочных полос (ВПП). .

Изобретение относится к области навигации летательных аппаратов с использованием искусственных спутников земли и может быть использовано при осуществлении посадки летательных аппаратов (ЛА).

Изобретение относится к области авиационной техники и может найти применение при создании систем управления самолетами, обеспечивающих бездвигательную посадку самолетов различного назначения.

Изобретение относится к радионавигации и может использоваться в системах посадки летательных аппаратов по приборам

Изобретение относится к радионавигации и может использоваться в пилотажно-навигационных системах ориентации летательного аппарата (ЛА), например, при заходе на посадку по приборам

Изобретение относится к способам обеспечения безопасности эксплуатации летательных аппаратов

Изобретение относится к гидроавиации, в частности к самолетам-амфибиям, и предназначено для использования в автоматических системах управления посадкой и взлетом с водной поверхности самолетов-амфибий

Изобретение относится к инструментальным системам захода самолетов на посадку

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение относится к области авиации, в частности к области способов помощи в навигации для определения траектории летательного аппарата. Технический результат - ограничение использования процедур увода при потере спутниковой навигационной информации, что позволяет уменьшить насыщенность воздушного пространства и ограничить затраты и продолжительность полетов. Способ помощи в навигации заключается в определении будущей траектории захода на посадку, с помощью произведения оценки прогнозируемых безопасных радиусов на будущей траектории, основанной на вычислении предельного момента, начиная с которого прогнозируемый безопасный радиус превышает или равен пределу выдачи тревожного сигнала и вычисления предельного момента ухода, который соответствует максимальному моменту, в который летательный аппарат должен покинуть заранее определенную траекторию, по которой он двигался, чтобы иметь возможность выйти на безопасную высоту. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к авиационной технике. Система автоматического управления самолетом при заходе на посадку содержит посадочную радиотехническую систему, включающую в себя связанные через радиоканал наземный глиссадный радиомаяк, бортовой глиссадный радиоприемник и дальномер. Также в системе имеется блок умножения, вычислитель комплексной системы управления и связанные с ним датчики вертикальной перегрузки, угловой скорости тангажа и угла атаки, рулевой привод, интеграторы, сумматоры и фильтр. Система дополнительно содержит взаимосвязанные фильтры, сумматоры, шесть нелинейных блоков, датчик вмешательства летчика в управление самолетом, датчик угла крена, инвертор, двухпозиционный ключ, три блока статических коэффициентов передачи сигналов и датчик вертикальной скорости полета самолета. Достигается повышение помехозащищенности, точности и надежности системы. 5 ил.

Способ посадки летательного аппарата, при котором используется штатные приводные радиолокационные и навигационные системы, а также лазерная система автоматического управления посадкой, содержащая два полусферических, сферический, четыре цилиндрических датчика лазерного излучения, контроллер лазерной системы, лазерный излучатель, включающий лазер и два электромеханических преобразователя, объединенные в двухкоординатный модуль поворота мощного лазера. Статор электромеханических преобразователей по продольной оси ортогонально прикреплен к несущему основанию летательного аппарата. Датчики лазерного излучения включают контроллер, имеющий многоканальный вход, радиоприемопередатчик, контроллер радиоприемопередатчика, контроллер лазера, фотодиоды, расположенные на поверхности датчика с дискретным шагом по углам пеленга и места. Обеспечивается надежность посадки летательных аппаратов в экстремальных метеоусловиях, ближнее и дальнее выравнивание при подлете к взлетно-посадочной полосе. 6 ил.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ). В случае отсутствия на борту ЛА сигналов «Готовность курса (глиссады или дальности)» сигналы управления формируют с помощью параметров виртуального курсового (глиссадного или дальномерного) маяков (ВКРМ, ВГРМ, ВДРМ), размещенных определенным образом. Определяют координаты и высоту ВГРМ, пеленг ВКРМ и угла места ВГРМ относительно ЛА. Определяют рассогласование пеленга ВКРМ относительно ЛА и курса ВПП, рассогласование угла места ВГРМ относительно ЛА и заданного экипажем угла наклона траектории посадки для корректировки сигналов управления. Обеспечивается надежность системы посадки. 5 ил., 1 табл.
Наверх