Способ выращивания гетероструктуры для инфракрасного фотодетектора

Изобретение относится к технологии выращивания полупроводниковых гетероструктур со множественными квантовыми ямами методом молекулярно-пучковой эпитаксии (МПЭ) и может быть использовано при изготовлении устройств на основе фотоприемных матриц с чувствительностью в глубоком инфракрасном диапазоне (8-12 мкм). Сущность изобретения: в способе выращивания гетероструктуры для инфракрасного фотодетектора, включающей подложку и вышележащие полупроводниковые слои - контактные и слои, образующие активную область, содержащую множество квантовых ям и барьеров, методом молекулярно-пучковой эпитаксии путем нагрева подложки в вакууме и попеременной подачи потоков реагентов в квантовые ямы и барьеры, а также легирующей примеси - Si в квантовые ямы, в квантовые ямы подают реагенты: Ga и As, а в квантовые барьеры - Al, Ga и As, в квантовые ямы дополнительно подают Аl в количестве, обеспечивающем его мольную долю в квантовой яме 0,02-0,10, при этом в процессе выращивания слоев, образующих активную область, температуру подложки поддерживают в пределах 700-750°С, а уровень легирования квантовых ям поддерживают в пределах (2-5)×1017 см-3. Изобретение обеспечивает снижение количества кристаллических дефектов и повышение тем самым чувствительности (отношение сигнал/шум) и обнаружительной способности (минимальное значение детектируемого сигнала фотодетектора). 1 ил.

 

Изобретение относится к технологии выращивания полупроводниковых гетероструктур со множественными квантовыми ямами методом молекулярно-пучковой эпитаксии (МПЭ) и может быть использовано при изготовлении устройств на основе фотоприемных матриц с чувствительностью в глубоком инфракрасном диапазоне (8-12 мкм). Фоточувствительность в указанном спектральном диапазоне может быть обеспечена при низких температурах (менее 77К) за счет поглощения энергии при непрямых переходах носителей между подзонами в активной области гетероструктуры, состоящей из чередующихся пар квантовых ям (материала с меньшей шириной запрещенной зоны) и барьеров (материала с большей шириной запрещенной зоны). При выращивании таких гетероструктур необходимо решить ряд взаимосвязанных проблем:

- абсолютная величина поглощения в одной квантовой яме достаточно низка, поэтому в активной области гетероструктуры используют несколько десятков (от 20 до 50) пар квантовых ям и барьеров, химический состав и толщина которых должны быть выдержаны как можно более точно для обеспечения необходимой спектральной чувствительности;

- для увеличения эффективности поглощения квантовые ямы обычно модулированно легируют (например, донорной примесью - Si) до высоких концентраций (в том числе, применяется так называемое «дельта-легирование»), однако при этом необходимо учитывать явление поверхностной сегрегации, приводящее к неоднородности концентрации примеси, наиболее выраженное при повышенных температурах роста;

- для обеспечения точности поддержания состава и толщины слоев активной области и резкости гетерограниц между ними предпочтительно снижать температуру выращивания, однако при этом в материалах слоев образуется повышенное количество кристаллических дефектов (дислокаций и глубоких примесей, главным образом, кислорода), являющихся центрами рекомбинации (DX-центрами), снижающими эффективность поглощения в квантовых ямах;

- повышение концентрации легирующей примеси в квантовых ямах увеличивает чувствительность активной области, однако приводит к повышенному «темновому» току фотодетектора и, следовательно, к необходимости снижения рабочей температуры.

Известен способ выращивания гетероструктуры для инфракрасного детектора, включающей подложку и вышележащие полупроводниковые слои - контактные и слои, образующие активную область, содержащую 50 квантовых ям GaAs и квантовых барьеров AlGaAs. Квантовые ямы легированы Si с уровнем легирования 3,3-1018 см-3. Температуру подложки поддерживают 690°С, см. D.K.Sengupta и др. Growth and Characterization of n-Type GaAs / AlGaAs Quantum Well Infrared Photodetector on GaAs-on-Si Substrate, Journal of Electronic Materials, Vol.27, No.7, 1998, P.P.858859, США (копия прилагается). Данный способ не обеспечивает резкости гетерограниц из-за термической неустойчивости GaAs при температуре 690°C. Кроме того, при высоком уровне легирования при данной температуре вследствие поверхностной сегрегации атомов Si не обеспечивается однородность легирования квантовых ям. Это приводит к падению спектральной чувствительности фотодетектора и увеличению темнового тока.

Известен способ выращивания гетероструктуры для инфракрасного фотодетектора, включающей подложку и вышележащие полупроводниковые слои, образующие активную область, содержащую множество легированных кремнием квантовых ям, а также множество квантовых барьеров. Способ осуществляют методом МПЭ путем нагрева подложки в вакууме при t 580°C, в квантовые ямы подают реагенты Ga и As, а в квантовые барьеры - Al, Ga и As. Уровень легирования квантовых ям Si:1×1018 см-3, см. K.L.Tsai и др., Influence of oxygen on the performance of GaAs / AlGaAs quantum wellinfrared photodetectors, Journal of Applied Physics 76 (1), 1 July 1994, P.P.274-277 (копия прилагается).

Данное техническое решение принято в качестве прототипа настоящего изобретения. В данном способе температура процесса снижена по сравнению с вышеописанным аналогом, что предотвращает термическую неустойчивость GaAs и обеспечивает определенную резкость гетерограниц, однако низкая температура процесса обусловливает повышенное количество кристаллических дефектов (дислокаций и глубоких примесей, например кислорода), являющихся центрами рекомбинации (DX-центрами), снижающими эффективность поглощения в квантовых ямах и, соответственно, чувствительность и обнаружительную способность инфракрасного детектора.

Задачей настоящего изобретения является снижение количества кристаллических дефектов и повышение тем самым чувствительности (отношение сигнал/шум) и обнаружительной способности (минимальное значение детектируемого сигнала фотодетектора).

Согласно изобретению в способе выращивания гетероструктуры для инфракрасного фотодетектора, включающей подложку и вышележащие полупроводниковые слои - контактные и слои, образующие активную область, содержащую множество квантовых ям и барьеров, методом молекулярно-пучковой эпитаксии путем нагрева подложки в вакууме и попеременной подачи потоков реагентов в квантовые ямы и барьеры, а также легирующей примеси - Si в квантовые ямы, причем в квантовые ямы подают реагенты Ga и As, а в квантовые барьеры - Al, Ga и As, в квантовые ямы дополнительно подают Al в количестве, обеспечивающем его мольную долю в квантовой яме 0,02-0,10, при этом в процессе выращивания слоев, образующих активную область, температуру подложки поддерживают в пределах 700-750°C, а уровень легирования квантовых ям поддерживают в пределах (2-5)×1017 см-3.

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию «Новизна».

Реализация отличительных признаков изобретения обусловливает важное новое свойство заявленного способа: обеспечение резкости гетерограниц наряду с уменьшением количества кристаллических дефектов. Подача в квантовые ямы Al в количестве, обеспечивающем его мольную долю в квантовой яме в пределах 0,02-0,10, повышает термическую устойчивость материала квантовой ямы и предотвращает снижение резкости гетерограниц даже при достаточно высоких (700-750°C) температурах, при которых количество кристаллических дефектов значительно снижается. Нижний предел - 700°C обусловлен тем, что при температурах выше 700°C адсорбция примесей (атомов кислорода) пренебрежимо мала, повышение температуры процесса выше 750°C нерационально, так как не дает дополнительного эффекта. При этом поверхностная сегрегация атомов Si понижена за счет снижения уровня легирования до (2-5)×1017 см-3 (практически, на порядок ниже в сравнении с прототипом), что уменьшает неоднородность концентрации примесей.

Снижение уровня легирования до указанных выше значений стало возможным благодаря тому, что при повышенной до 700-750°C температуре процесса количество дефектов уменьшается и, соответственно, увеличивается чувствительность активной области гетероструктуры, что компенсирует снижение чувствительности, связанное с уровнем легирования.

Указанные новые свойства изобретения обусловливают, по мнению заявителя, соответствие изобретения критерию «Изобретательский уровень».

Заявленный способ иллюстрируется приведенной на чертеже схемой установки для МПЭ.

В вакуумной камере 1 размещают кристаллическую подложку 2 для выращивания гетероструктуры. Для поддержания высокого вакуума в ходе процесса используют криопанели 3 с жидким азотом. Маневрирование подложкой 2 и ее нагрев осуществляют при помощи манипулятора 4. Исходные реагенты в виде атомарных пучков металлов III группы (Al, Ga) и легирующей примеси (Si) подают на подложку 2 из испарителей 5, а подача мышьяка (As) осуществляется через источник с крекером 6.

Сначала подложку 2 нагревают до температуры 580-600°C для удаления собственного окисла путем его термического разложения. Затем на нагретую поверхность подложки 2 одновременно подают потоки As из источника 6 и атомов Ga и Si из испарителей 5 для выращивания нижнего контактного слоя заданной толщины и концентрации носителей. Затем за короткий промежуток времени одновременно повышают температуру подложки до значений в диапазоне 700-750°C, перекрывают поток атомов Si и на подложку подают атомарный поток Al для выращивания первого барьерного слоя. По достижении заданной толщины барьерного слоя переключают потоки атомов Al так, чтобы мольная доля алюминия находилась в диапазоне 0,02-0,10, и открывают поток атомов Si, обеспечивающий уровень легирования (2-5)×1017 см-3 квантовой ямы. В этом режиме проводят выращивание заданной толщины квантовой ямы, после чего проводят обратное переключение к режиму выращивания барьерного слоя. Цикл выращивания пары «квантовая яма/барьер» повторяют заданное число раз, после чего перекрывают поток атомов Al и проводят выращивание верхнего контактного слоя GaAs.

Таким образом, выращенная согласно заявленному способу гетероструктура для инфракрасного фотодетектора имеет значительно меньшую концентрацию глубоких центров рекомбинации в барьерных слоях и при обеспечении резкости гетерограниц, соответственно, обладает высокой эффективностью преобразования падающего излучения.

Реализация способа осуществляется с помощью известных оборудования и материалов. По мнению заявителя, изобретение соответствует критерию «Промышленная применимость».

Способ выращивания гетероструктуры для инфракрасного фотодетектора, включающей подложку и вышележащие полупроводниковые слои - контактные и слои, образующие активную область, содержащую множество квантовых ям и барьеров, методом молекулярно-пучковой эпитаксии путем нагрева подложки в вакууме и попеременной подачи потоков реагентов в квантовые ямы и барьеры, а также легирующей примеси - Si в квантовые ямы, причем в квантовые ямы подают реагенты: Ga и As, а в квантовые барьеры - Al, Ga и As, отличающийся тем, что в квантовые ямы дополнительно подают Аl в количестве, обеспечивающем его мольную долю в квантовой яме 0,02-0,10, при этом в процессе выращивания слоев, образующих активную область, температуру подложки поддерживают в пределах 700-750°С, а уровень легирования квантовых ям поддерживают в пределах (2-5)·1017 см-3.



 

Похожие патенты:

Изобретение относится к способам и структурам для формирования микроэлектронных устройств. .

Изобретение относится к нанотехнологии и может быть использовано для синтеза массивов пространственно-упорядоченных наночастиц полупроводников. .

Изобретение относится к получению полупроводниковых наноматериалов. .

Изобретение относится к устройству плазменного осаждения из паровой фазы для получения кремниевых тонкопленочных модулей солнечного элемента, к способу получения тонкопленочных модулей и к кремниевым тонкопленочным фотогальваническим панелям.

Изобретение относится к технологическому оборудованию для нанесения полупроводниковых материалов на подложку эпитаксиальным наращиванием и может быть использовано при изготовлении различных полупроводниковых приборов микро- и оптоэлектроники.

Изобретение относится к области электронной техники и может быть использовано при производстве изделий микроэлектроники. .
Изобретение относится к солнечным элементам и к новому использованию тетрахлорида кремния. .

Изобретение относится к нанопроволокам и устройствам с полупроводниковыми нанопроволоками. .

Изобретение относится к технике получения пленок молекулярно-лучевым осаждением и использованием резистивных источников напыляемого материала
Изобретение относится к материаловедению, а именно к технологии получения тонких пленок

Изобретение относится к базовой плате и способу ее производства

Изобретение относится к способу изготовления высококачественных пластин нитрида галлия эпитаксиальным выращиванием с низкой плотностью дислокации на подложке и отделением от исходной подложки, а также к полупроводниковым пластинам, имеющим кристалл GaN

Изобретение относится к устройству для каталитического химического осаждения из паровой фазы и может быть использовано для формирования пленки на подложке

Изобретение относится к области силовой микроэлектронной техники, а более конкретно, к способам изготовления полупроводниковых p-i-n структур из соединений A3B5 методами жидкостной эпитаксии

Изобретение относится к технологии получения массивов наноколец различных материалов, используемых в микро- и наноэлектронике. Сущность изобретения: в способе получения массивов наноколец, включающем подложку с нанесенными полистирольными сферами, с нанесенным затем слоем металла и последующим травлением, в качестве подложки используют упорядоченные пористые пленки, а расположение наноколец задается расположением пор в пленочном материале с использованием подходов самоорганизации. Изобретение обеспечивает экономичное, воспроизводимое и контролируемое формирование упорядоченных массивов наноколец. 7 з.п. ф-лы, 3 ил.

Изобретение относится к сфере производства гетероэпитаксиальных структур, которые могут быть использованы в технологии изготовления элементов полупроводниковой электроники, способных работать в условиях повышенных уровней радиации и высоких температур. Гетероэпитаксиальную полупроводниковую пленку на монокристаллической подложке кремния выращивают методом химического осаждения из газовой фазы. Проводят синтез гетероструктуры SiC/Si на монокристаллической подложке кремния в горизонтальном реакторе с горячими стенками путем формирования переходного слоя между подложкой и пленкой карбида кремния со скоростью не более 100 нм/ч при нагреве упомянутой подложки до температуры от 700 до 1050°C с использованием газовой смеси, содержащей 95-99% водорода и в качестве источников кремния и углерода SiH4, C2H6, С3Н8, (CH3)3SiCl, (CH3)2SiCl2, при этом C/Si≥2, и формирования монокристаллической пленки карбида кремния с помощью подачи в реактор парогазовой смеси водорода и CH3SiCl3 при поддержании в реакторе абсолютного давления в диапазоне от 50 до 100 мм рт.ст. В качестве подложки кремния используют пластину, имеющую угол наклона относительно кристаллографического направления (111) в направлении (110) от 1 до 30 угловых градусов и в направлении (101) от 1 до 30 угловых градусов. Обеспечивается улучшение совместимости двух материалов слоя карбида кремния и подложки кремния с различным периодом кристаллических решеток, при этом понижаются механические напряжения в гетероструктуре и получаются более низкие плотности дефектов в слое карбида кремния. 6 н.п. ф-лы, 4 ил., 3 пр.
Наверх