Способ генерации импульсного рентгеновского излучения

Изобретение относится к области рентгенотехники и может быть использовано в медицине, дефектоскопии, микроскопии. Способ генерации импульсного рентгеновского излучения включает фокусирование лазерного излучения рубинового лазера оптической системой и воздействие излучения на охлажденную до температуры 200 К опаловую матрицу - упорядоченную структуру из кремнезема диаметром 0,2-0,4 мкм. При этом межсферические нанополости опаловой матрицы заполнены веществом с величиной диэлектрической проницаемости не менее 2,5 с коэффициентом заполнения в интервале 30-85%, а мощность лазерного излучения составляет 0,25-10 ГВт/см2. Техническое решение позволяет уменьшить угловую расходимость импульсного рентгеновского излучения. 2 з.п. ф-лы, 3 ил., 2 табл.

 

Изобретение относится к области рентгенотехники и может быть использовано в медицине, рентгенографии, дефектоскопии материалов и рентгеновской микроскопии.

Известны различные способы генерации в твердотельных системах импульсного рентгеновского излучения, основаны на создании потока заряженных частиц и его взаимодействии с твердым телом. Известен способ генерации рентгеновского излучения, основанный на воздействии в вакууме пучка электронов на твердотельную мишень, электронная подсистема материала которой определяет спектр рентгеновского излучения [Рентгенотехника. Справочник, кн. 1-2, М. 1980]. Способ включает создание в вакууме определенной концентрации электронов, вырываемых из катода в результате термоэлектронной или автоэлектронной эмиссии, ускорение потока электронов электрическим полем и бомбардировка мишени потоком электронов. Перечисленные операции приводят к испусканию рентгеновского излучения за счет возбуждения электронных переходов в атомах мишени и потери кинетической энергии при торможении бомбардирующих мишень электронов. К недостаткам предлагаемых разработок можно отнести необходимость создания глубокого вакуума и громоздкость конструкции электрического обеспечения процесса.

Известен способ генерирования рентгеновского излучения посредством воздействия на мишень мощными лазерными пучками видимого и ИК-диапазонов (например, YAG-лазера) [УФН т.168, №8, с.843-876. Проблема угловой расходимости и пространственной когерентности излучения рентгеновского лазера. П.Д Гаспарян и другие]. Способ включает создание лазерного излучения, обработку лазерного луча, возбуждение среды воздействия лазером, бомбардировка плазмой поверхности мишени, приводящей к генерированию рентгеновского излучения, при этом длительность импульса генерации рентгеновского лазера составляет 0,1-10 нс и определяется временем жизни плазменного образования. Пороговые условия генерации рентгеновских лучей зависят от значений плотности ионов в плазме, инициирующих переход электронов на соответствующие уровни. Данное техническое решение недостаточно эффективно обеспечивает управление параметрами рентгеновского излучения.

Наиболее близким способом генерации рентгеновского излучения к заявляемому по своей технической сущности является способ, представленный в работе [Чернега Н.В., Самойлович М.И., Белянин А.Ф., Кудрявцева А.Д., Клещева С.М. Генерация электромагнитного и акустического излучений в наноструктурированных системах // Нано- и микросистемная техника. 2011. №4. С.21-31].

Способ генерации импульсного рентгеновского излучения с малой угловой расходимостью под действием импульсного лазерного излучения включает фокусирование лазерного излучения рубинового лазера оптической системой и воздействие излучения на охлажденную опаловую матрицу - упорядоченную структуру из микросфер кремнезема диаметром 0,2-0,4 мкм. В результате взаимодействия импульсного лазерного излучения (наносекундного диапазона длительности) с трехмерной фотонно-фононной средой - решетчатой упаковкой наносфер SiO2 генерировалось рентгеновское излучение, регистрируемое рентгеновской фотопленкой. Однако указанный способ не дает возможность формировать импульсное рентгеновское излучение с расходимостью менее 1·10-3 рад.

Технический результат предлагаемого способа заключается в уменьшении угловой расходимости импульсного рентгеновского излучения. Такой способ генерации импульсного рентгеновского излучения с малой угловой расходимостью основан на фокусировании лазерного излучения рубинового лазера оптической системой и воздействие импульсным лазерным излучением мощностью 0,25-10,0 ГВт/см2 на охлажденный до температуры ниже 200 К образец опаловой матрицы - упорядоченную структуру из микросфер рентгеноаморфного кремнезема (SiO2) диаметром 0,2-0,4 мкм, чьи межсферические нанополости заполнены веществами с величиной диэлектрической проницаемости (ε) не менее 2,5 с коэффициентом заполнения в интервале 30-85%.

Техническое решение, основанное на зависимости степени пространственной когерентности импульсного от мощности лазерного излучения, а также коэффициента и материала заполнения межсферических микрополостей, играющих роль микрорезонаторов, можно продемонстрировать с использованием иллюстраций, представленных на рис.1-3. Особенности геометрического и реального строения опаловых матриц представлены на рис.1, на котором приведен снимок поверхности (при исследованиях строения образцов опаловой матрицы применялся растровый электронный микроскоп CARL ZEISS LEO 1430 VP) опаловой матрицы и схема строения подрешетки ее межсферических нанополостей и показано: а) строение (растровая электронная микроскопия) поверхности объемного образца опаловой матрицы, б) тетраэдрические и октаэдрические полости (по числу формирующих полость сфер), образованные микросферами SiO2 (D - диаметр микросфер SiO2); в) объемная модель полостей и соединяющих их каналов. Имеющаяся в опаловых матрицах упорядоченная подрешетка микрополостей, играющих роль микрорезонаторов для тормозного излучения в рентгеновском диапазоне электронов, генерируемых при воздействии лазерного излучения, обладает различными характеристиками в зависимости от соотношения значений диэлектрических проницаемостей основы (в данном случае микросфер рентгеноаморфного кремнезема с ε=2,2-2,3) и межсферической микрополости, заполненной различными веществами в жидком или твердом состоянии.

Облучение образца опаловой матрицы рубиновым лазером проводилось в соответствии со схемой экспериментальной установки, представленной на рис.2, где 1 - лазер, 2 - лазерный луч, 3 - оптическая система фокусирования лазерного излучения на образец, 4 - образец опаловой матрицы (упорядоченная структура из микросфер кремнезема диаметром 0,2-0,4 мкм), 5 - рентгеновское излучение, 6 - система регистрации рентгеновского излучения, 7 - подложка, 8 - кювета с жидким азотом. Рентгеновская пленка закреплялась на краю кюветы, заполненной жидким азотом, на расстоянии 50 мм от образца, размещенного на медной подложке.

Процесс формирования объемных заготовок на основе плотнейших кубических упаковок сферических частиц SiQ2 основан на реакции гидролиза тетраэфира ортокремневой кислоты (Si(OC2H5)4) в C2H5OH в присутствии NH4OH (смешение 1 части NH4OH (25% водный раствор), 50 частей C2H5OH и 1,6 частей Si(OC2H5)4, предварительно прогретого при температуре 105°С в течение 180 минут). Изготовленная суспензия микросфер рентгеноаморфного кремнезема выдерживалась 2-3 месяца (в зависимости от заданного объема осаждаемого материала). После отстаивания суспензии, удаления гидролизата и упрочнения осадка получали объемный материал с упорядоченным расположением наносфер SiO2. В плотнейшей упаковке (степень заполнения пространства наносферами SiO2 составляет 74,05%) наносферы образуют тетраэдрические и октаэдрические полости с размерами от 0,05 до 0,15 мкм для указанных диаметров микросфер. Подобные полости занимают около 24% от общего объема и могут быть заполнены различными веществами.

В зависимости от условий получения диаметр микросфер SiO2 может варьироваться от 0,2 до 0,4 мкм. Технология получения рентгеноаморфного кремнезема, представленного упорядоченной упаковкой наносфер SiO2, подробно рассмотрены в литературе, например, в книге: [Наноматериалы. III. Фотонные кристаллы и нанокомпозиты на основе опаловых матриц // Коллективная монография. Под ред. М.И.Самойловича. М.: Техномаш. 2007. 303 с.].

На рис.3 дан рентгеновский снимок, полученный для образца опаловой матрицы, представляющего упорядоченную упаковку микросфер SiО2 диаметром 0,25 мкм (межсферические нанополости заполнены иттрием хлористым растворенным в воде в с концентрацией 10 грамм/100 мл с коэффициентом заполнения 70%), при интенсивности накачки - 0,4 ГВт/см2 (поперечный размер пятна 1,1 мм, что соответствует угловой расходимости менее 1·10-3 рад). Растворимость различных веществ и получаемые значения диэлектрической проницаемости определялись по справочным данным и контролировались с использованием диэлектрического анализатора Novocontrol Alpha AN.

Осуществление изобретения

В качестве источника возбуждающего излучения использовался лазер (1) на рубине, чей частотный диапазон с длиной волны генерации 694,3 нм, работающий в режиме модуляции добротности и длительностью одиночных импульсов - 20 нс. Излучение лазера фокусировалось на образец, расположенный на медной подложке, помещенной в кювету с жидким азотом. Возбуждающее излучение фокусировалось в вещество линзами с различным фокусным расстоянием (50, 90 и 150 мм). Расстояние опаловой матрицы от фокусирующей системы и энергия возбуждающего излучения менялись, что давало возможность проводить измерения для различной плотности мощности накачки в образец опаловой матрицы и для различного распределения поля в микрополостях внутри образца. Облучение образца опаловой матрицы рубиновым лазером проводилось в соответствии со схемой, представленной на рис.2. Рентгеновская пленка закреплялась на краю кюветы, заполненной жидким азотом, на расстоянии 50 мм от центра образца, размещенного на медной подложке.

Межсферические нанополости образцов опаловых матриц, изготовленных механической обработкой исходных заготовок (использованные образцы опаловых матриц имели размеры 5×5×3 мм или произвольную форму, образованную раскалыванием исходной заготовки), были заполнены различными веществами. Заполнение твердыми веществами проводили методом пропитки растворами солей (нитраты, хлориды и др.) металлов с последующим отжигом на воздухе. Указанные выше параметры межсферических микрополостей и их соединяющих каналов определяют эффективность применения метода пропитки при введении растворов в межсферические нанополости и последующего синтеза (отжиг) необходимых соединений. Степень заполнения межсферических микрополостей материалами, вводимыми пропиткой водными растворами солей, от числа пропиток (экспериментальные данные) представлены в таблице 1. Правильность упаковки наносфер SiO2 сохраняется при введении (в том числе и в процессе их формирования) в межсферические микрополости различных веществ.

Исследовались как образцы опаловых матриц, так и нанокомпозиты (образцы опаловых матриц с микрополостями, заполненными веществами с величиной диэлектрической проницаемости (ε) не менее 2,5 с коэффициентом заполнения в интервале 30-85%, например, водными растворами различными (в частности, нитратов или хлоридов) солей металлов, оксидами металлов, самими металлами, а также жидкостями с указанными параметрами или их смесями.

Таблица 1.
Заполнение межсферических нанополостей материалами, вводимыми пропиткой водными растворами солей (экспериментальные данные)
Число пропиток Степень заполнения объема межсферических нанополостей, %
1 25
2 35
3 42
4 48
5 53
6-8 57-64
9-12 65-72
13-15 73-77
16-20 78-82
21-30 83-80

Пространственное распределение электромагнитного излучения рентгеновского диапазона регистрировалось с использованием рентгеновских кассет РЕНЕКС ЭУ-И4 в комбинации с пленкой Kodak, предназначенной для рентгеновского излучения, получаемого с использованием рентгеновских трубок с напряжением на них в интервале от 40 до 100 и более кВ. Кассета с рентгеновской пленкой помещалась на расстоянии 50 мм от образца опаловой матрицы. При интенсивностях лазерного излучения, превышающих пороги возникновения акустических колебаний и сопровождающих их свечения образца, на кассете регистрировалось рентгеновское излучение в виде отдельной засветки. Сигнал представлял собой небольшую по диаметру область - темную точку с характерным пространственным распределением (рис.3). Генерация рентгеновского излучения при указанных экспериментальных условиях представляет собой эффект, порог которого совпадает с таковым для возникновения акустических колебаний и сопутствующим свечением (акустолюминисценцией). В результате проведенных опытов были установлены условия генерации импульсного рентгеновского излучения с угловой расходимостью, не превышающей 1·10-3 рад, с использованием контрастности диэлектрических характеристик микросфер кремнезема, образующих систему с запрещенными фотонными зонами и микрополостями, заполненными соответствующими веществами с заданным коэффициентом заполнения и значениями диэлектрической проницаемости.

Генерация рентгеновского излучения с малой угловой расходимостью (<1·10-3 рад) происходит при воздействии на образцы опаловых матриц, чьи межсферические нанополости заполнены веществами с величиной диэлектрической проницаемости (ε) не менее с коэффициентом заполнения в интервале 30-85%, импульсным лазерным излучением мощностью в пределах 0,25-10 ГВт/см2. При воздействии на образцы опаловых матриц импульсным лазерным излучением мощностью меньше 0,25 ГВт/см2, импульсное рентгеновское излучения не возникает; мощность импульсного лазерного излучения больше 10 ГВт/см2 приводит к механическому разрушению образцов опаловых матриц. Образцы опаловых матриц с коэффициентом заполнения межсферических нанополостей различными веществами, с указанными параметрами, менее 30% характеризуются угловым расхождениями для одиночных импульсов рентгеновского излучения >1,5·10-3. Заполнение межсферических нанополостей образцов опаловых матриц более 85% технически невозможно из-за перекрытия каналов.

Энергетические и геометрические условия возбуждения можно было менять, варьируя, в частности, мощностью лазерной накачки и (или) коэффициентом заполнения. Последнее позволяло проводить измерения при различных плотностях мощности возбуждающего излучения на входе в образец. В качестве образцов использовались опаловые матрицы, состоящие из микросфер кремнезема различного диаметра в диапазоне 0,2-0,4 мкм, которые охлаждались до температур 100-150 К. Рентгеновская пленка устанавливалась на фиксированном расстоянии от центра образца, в которых менялось как вещество заполнения, так и коэффициент заполнения его межсферических микрополостей (табл.2).

Таблица 2
Зависимость угловой расходимости одиночных импульсов рентгеновского излучения от параметров образца опаловой матрицы.
Т образца, К Материал заполнения микрополостей Коэффициент заполнения микрополостей, % Подаваемая мощность лазерного излучения, ГВт/см2 Угловая расходимость одиночного импульса, рад
1 прототип 100 этанол 85 0,2 1,5·103
2 прототип 300 глицерин 85 0,11 2,5·10-3
3 100 Нитрат кобальта, растворенный в воде в с концентрацией 18 грамм/100 мл 80 0,25 1,0·10-3
3 150 Нитрат кобальта, растворенный в воде в с концентрацией 18 грамм/100 мл 30 0,25 1,4·10-3
5 100 Нитрат кобальта, растворенный в воде в с концентрацией 11 грамм/100 мл 35 3,0 1,0·10-3
6 120 Нитрат никеля, растворенный в воде в с концентрацией 11 грамм/100 мл 80 1,2 <1,0·10-3
7 100 Никель металлический 30 9,9 1,0·10-3
8 300 Свинец металлический 25 3,0 <1,1·10-3
9 100 Свинец металлический 40 0,4 <1,0·10-3
10 100 Нитрат свинца, растворенный в воде с концентрацией 16 грамм/100 мл 80 3,0 <1,0·10-3
11 100 Иттрий хлористый, растворенный в воде в с концентрацией 10 грамм/100 мл 70 0,2 <1,0·10-3
12 300 Иттрий хлористый, растворенный в воде в с концентрацией 18 грамм/100 мл 30 8,5 1,2·10-3
13 100 Иттрий хлористый, растворенный в смеси воды и глицерина в соотношении 1:1 с концентрацией 2,8 грамм/100 мл 70 0.2 <1,0·10-3
14 100 Смесь глицерина и нитробензола в соотношении 1:1 с 85 0,6 1,0·10-3

1. Способ генерации импульсного рентгеновского излучения с малой угловой расходимостью под действием импульсного лазерного излучения, включающий фокусирование лазерного излучения рубинового лазера оптической системой и воздействие излучения на охлажденную до температур менее 200 К опаловую матрицу - упорядоченную структуру из микросфер кремнезема диаметром 0,2-0,4 мкм, отличающийся тем, что, с целью уменьшения угловой расходимости импульсного рентгеновского излучения, на опаловую матрицу, чьи межсферические нанополости заполнены веществами с величиной диэлектрической проницаемости (ε) не менее 2,5 с коэффициентом заполнения в интервале 30-85%, воздействуют импульсным лазерным излучением мощностью 0,25-10 ГВт/см2.

2. Способ по п.1, отличающийся тем, что опаловую матрицу охлаждают до температуры 100 К, а межсферические микрополости опаловой матрицы заполнены водным раствором хлорида иттрия с коэффициентом заполнения 70%.

3. Способ по п.1, отличающийся тем, что опаловую матрицу охлаждают до температуры 100 К, а межсферические микрополости опаловой матрицы заполнены металлическим свинцом с коэффициентом заполнения 40%.



 

Похожие патенты:
Изобретение относится к области рентгенографии быстропротекающих процессов. .

Изобретение относится к медицинской технике, а именно к рентгеновским сканерам для обследований пациентов. .

Изобретение относится к медицинской технике, а именно к рентгеновским аппаратам, и может быть использовано для визуального контроля облучаемой рентгеновским аппаратом зоны на теле пациента.

Изобретение относится к области электротехники, в частности к конструкции высоковольтного трансформатора, который содержит первичную плоскую обмотку (4, 8), вторичную обмотку (10) типа литцендрат, сердечник и катушку, имеющую множество прорезей, в которых намотана обмотка типа литцендрат, при этом поверхности плоских обмоток упираются в плоские поверхности сердечника.

Изобретение относится к рентгеновской технике, в том числе к медицинской, а именно к устройствам для контроля технических характеристик цифровых рентгеновских аппаратов.

Изобретение относится к области радиационных технологий и может быть использовано для облучения жидких объектов, в частности донорской крови и ее компонентов. .

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения.

Изобретение относится к неразрушающему контролю объектов с помощью рентгеновского излучения. .

Изобретение относится к электронным кассетам для получения рентгеновского изображения
Изобретение относится к медицинской технике, а именно к устройствам для компьютерной томографической ангиографии с компенсацией дыхательного движения

Изобретение относится к области электротехники и может быть использовано в цепях генератора высокого напряжения системы формирования рентгенографических изображений, устройства трехмерной ротационной ангиографии или устройства рентгеновской компьютерной томографии типа с веерным или конусным лучом. Технический результат - обеспечение эффективности управления подводимой выходной мощностью при нулевом токе в каждом цикле коммутации для исключения потерь. Схема силового преобразователя резонансного типа содержит межфазный трансформатор (406), последовательно подключенный, по меньшей мере, к одному последовательно подключенному резонансному контуру (403а и 403а' или 403b и 403b') на выходе двух каскадов (402а+b) силового инвертора преобразования постоянного тока в переменный ток, питающих трансформатор (404) высокого напряжения с множеством первичных обмоток. Межфазный трансформатор (406) служит для устранения рассогласования (ΔI) резонансных выходных токов (I1, I2) каскадов (402а+b) силового инвертора преобразования постоянного тока в переменный ток. Способ управления гарантирует, что межфазный трансформатор (406) не насыщается, обеспечивает работу при нулевом токе и предусматривает минимизацию потерь мощности на входе. 4 н. и 12 з.п. ф-лы, 9 ил.

Изобретение относится к медицинской технике, а именно к спектральной компьютерной визуализации. Система визуализации содержит стационарный гентри, поворотный гентри, установленный на стационарном гентри, рентгеновскую трубку, закрепленную на поворотном гентри, которая поворачивается и испускает полихроматическое излучение, пересекающее область исследования. Излучение имеет среднее напряжение испускания, которое поочередно переключается между, по меньшей мере, двумя разными средними напряжениями испускания в течение процедуры визуализации. Двухслойная детекторная матрица с энергетическим разрешением в режиме счета фотонов регистрирует излучение, пересекающее область исследования., и регистрирует излучение в, по меньшей мере, двух разных диапазонах напряжений. Детекторная матрица выполнена с возможностью формирования выходных сигналов с энергетическим разрешением, в зависимости как от напряжения испускания, так и от диапазона напряжений. Блок реконструкции выполняет спектральную реконструкцию выходных сигналов с энергетическим разрешением. Способ оперирования системой содержит этапы, на которых переключают спектр испускания излучения, в течение процедуры визуализации, устанавливают набор энергетических порогов согласованно с переключением спектра испускания, регистрируют испускаемое излучение и идентифицируют энергию зарегистрированного излучения по набору энергетических порогов. Использование изобретения позволяет расширить арсенал средств компьютерной визуализации. 2 н. и 13 з.п. ф-лы, 11 ил.

Изобретение относится к области электротехники и может быть использовано для управления резонансным преобразователем мощности. Техническим результатом является уменьшение флуктуаций на выходе резонансного преобразователя мощности. В способе для управления переключающим устройством (260) резонансный контур (350) обеспечивают напряжением (Uwr) переключения для генерации резонансного тока (Ires), чтобы обеспечить необходимую выходную мощность (rP) на выходе резонансного преобразователя (100) мощности. Устройство приспособлено для выполнения способа для управления переключающим устройством. Кроме того, резонансный преобразователь мощности содержит управляющее устройство для выполнения способа управления. 3 н и 15 з.п. ф-лы, 11 ил.

Ускорительная трубка относится к рентгеновской технике и может быть использована в импульсном рентгеновском ускорителе для получения коротких рентгеновских высокоинтенсивных вспышек для регистрации быстропротекающих процессов в оптически плотных средах. Ускорительная трубка включает изолятор ускорительной трубки 1, контейнер изолятора 2 и герметичный изолирующий корпус 3 диодного узла ускорительной трубки с окном для вывода излучения, внутри которого находится вакуум, разделяющий катод и анод, выполненный в виде стальной трубы 4. Катод 5 выполнен в виде концентрического кольца со сквозными пазами 8 между радиально-ориентированными электродными выступами 7, количество которых не менее трех, (катод с принудительным токораспределением). Анод представляет собой анодный стержень 4, выполненный в виде державки конического вида из железа, со сферической головкой 6, выполненной в виде сферы из вольфрама. Технический результат- повышение равномерности пространственного распределения излучения и стабильности срабатывания ускорительной трубки. 2 з.п.ф-лы., 4 ил.

Изобретение относится к области рентгенотехники. Рентгеновская трубка (1) содержит катод (3), анод (5) и дополнительный электрод (7). При этом дополнительный электрод (7) выполнен так, что вследствие соударения со свободными электронами (27), исходящими от анода (5), дополнительный электрод (7) отрицательно заряжается до электрического потенциала, уровень которого находится между уровнем потенциала катода и уровнем потенциала анода. Дополнительный электрод (7) может быть пассивным, т.е. по существу электрически изолированным и не соединенным с активным внешним источником напряжения. Дополнительный электрод (7) может выполнять функцию ионного насоса, удаляя ионы из первичного электронного пучка (21), а кроме того, устраняя атомы остаточного газа в пределах корпуса (11) рентгеновской трубки (1). Для дополнительного повышения способности дополнительного электрода (7) по откачке ионов в окрестности дополнительного электрода (7) может быть установлен генератор (61) магнитного поля. Технический результат - улучшение характеристики фокусировки. 8 з.п. ф-лы, 3 ил.

Изобретение относится к области рентгенотехники. Вращающийся анод для рентгеновской трубки содержит первый модуль, выполненный с возможностью соударения посредством первого электронного луча, по меньшей мере, второй модуль, выполненный с возможностью соударения, по меньшей мере, посредством второго электронного луча. Первый модуль и второй модуль электрически изолированы друг от друга. Раскрыта также рентгенографическая система, которая содержит анод согласно подробному описанию, главный катод для формирования электронного луча. Главный катод выполнен с возможностью формировать первый электрический потенциал, вспомогательный катод для влияния на второй электрический потенциал, при этом главный катод выполнен с возможностью отклонять электронный луч, чтобы нагревать вспомогательный катод. Кроме того, раскрыто устройство для определения электрического потенциала посредством обнаружения точки соударения электронного луча на аноде согласно подробному описанию и/или посредством обнаружения рентгеновского спектра излучения, исходящего из анода согласно подробному описанию, причем электронный луч формируется посредством катода, при этом электронный луч ударяет первый модуль анода в точке соударения, при этом электронный луч может отклоняться, причем отклоненный электронный луч ударяет второй модуль анода в точке соударения, при этом первый модуль и/или второй модуль испускают излучение. Технический результат - повышение качества рентгеновского снимка. 8 н. и 6 з.п. ф-лы, 15 ил.

Изобретение относится к рентгенотехнике. Разрядный модуль для высоковольтной рентгеновской трубки содержит три цепи: цепь управления рентгеновским излучением и измерением, цепь для распределения напряжения между несколькими последовательными ключами, которая изолирована от предыдущей, и третью цепь короткого замыкания, которая в свою очередь содержит последовательную или управляемую пусковую цепь ключей и другую основную разрядную цепь через ключи. Технический результат - повышение надежности контроля над излучением. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области рентгенотехники. Гентри для системы формирования изображения содержит вращающуюся раму (106), которая вращается около области исследования вокруг оси z; вторую раму (102, 104); опору (108), соединяющую с возможностью вращения вращающуюся раму (106) со второй рамой (102, 104), при этом одна из вращающейся рамы (106) или второй рамы (102, 104) подвижно соединена с опорой (108), а другая из вращающейся рамы (106) или второй рамы (102, 104) жестко соединена с опорой (108), и тормозящий компонент (112), который выборочно применяет тормоз к вращающейся раме (106).Тормозящий компонент (112) является частью бесконтактного подшипника с текучей средой, содержащего первую часть (1202), прикрепленную к вращающейся раме (106), и вторую часть (1206), прикрепленную ко второй раме (102), при этом вторая часть (1206) сцепляется с первой частью (1202) для торможения вращающейся рамы (106), при этом тормозящий компонент (112) управляется электрически управляемым клапаном (1218). 2 н. и 11 з.п. ф-лы, 21 ил.
Наверх