Инертный пластизольный состав

Изобретение относится к оборонной технике и может быть использовано для изготовления габаритно-массовых имитаторов (ГМИ) боеприпасов. Инертный пластизольный состав может имитировать по плотности различные взрывчатые пластизольные смеси. Состав представляет собой высококонцентрированную дисперсию инертных порошкообразных наполнителей (пищевую соль и алюминиевый порошок) в связующем, состоящем из пластификатора и полимера. В качестве пластификатора применяют триацетин, в качестве полимера - сополимер метилметакрилата и метакриловой кислоты в соотношение масс пластификатора и сополимера (0,4-0,6):1. Дополнительно для регулирования плотности в состав могут быть добавлены стеклянные полые микросферы в количестве до 2 мас.%. Изобретение обеспечивает стабильность при хранении пластизольного состава за счет отсутствия физических изменений в течение длительного времени, а также способность имитировать взрывчатые составы различной плотности. 1 з.п. ф-лы, 2 табл., 2 пр.

 

Изобретение относится к оборонной технике и может быть использовано для изготовления габаритно-массовых имитаторов (ГМИ) боеприпасов.

Предлагаемый инертный пластизольный состав может имитировать по плотности различные взрывчатые пластизольные смеси. Инертный пластизольный состав может храниться в составе ГМИ без физических изменений в течение длительного времени (не менее 11 лет).

Инертный пластизольный состав представляет собой высококонцентрированную дисперсию инертных порошкообразных наполнителей в связующем, состоящем из пластификатора и полимера.

Известны инертные пластизольные смеси ИЛП и ИЛА по ТУ 84-08628424-763-2002, применяемые для изготовления ГМИ. Гарантийный срок хранения ИЛА и ИЛП в составе изделия - 1 год.

Смеси ИЛП и ИЛА приняты в качестве прототипа как наиболее близкие по компонентному составу и физическим свойствам. В таблице 1 приведен компонентный состав и свойства этих смесей.

Как видно из табл.1, в техническом решении, принятом за прототип, предлагаются только две композиции - с большей и меньшей плотностями.

Однако плотность имитируемых взрывчатых пластизольных составов не ограничивается двумя значениями. Диапазон плотности взрывчатых пластизольных составов - от 1,78 до 1,92 г/см3.

Из таблицы 1 видно также, что для получения состава с меньшей плотностью (ИЛА) необходимо изменить соотношение «тяжелого» (алюминиевый порошок) и «легкого» (натрий хлористый) компонентов и увеличить содержание пластификатора. Увеличение содержания пластификатора приводит к увеличению времени отверждения состава.

Кроме того, избыток пластификатора может в процессе эксплуатации выделяться на поверхность отвержденного состава и вытекать из изделия. Последнее явление наблюдается в процессе хранения изделий, снаряженных смесями ИЛП и ИЛА, что приводит к выбраковке изделий.

Основными недостатками технического решения, принятого за прототип, являются:

- ограниченный ассортимент составов по плотности;

- наличие нестабильных эксплуатационных характеристик ГМИ, наполненных смесями;

- ограниченный гарантийный срок хранения в составе ГМИ, который не обеспечивает выполнение требований, предъявляемых к изделиям.

Предлагаемое изобретение направлено на создание стабильного инертного пластизольного состава, хранящегося без физических изменений в течение длительного времени и способного имитировать взрывчатые пластизольные составы различной плотности.

Указанный технический результат достигается использованием в рецептуре инертного состава пластизольного связующего, включающего сополимер (сополимера метилметакрилата и метакриловой кислоты):пластификатор (триацетин) в соотношении (0,4-0,6):1, при этом регулирование плотности состава осуществляется введением полых стеклянных микросфер.

Предлагаемая рецептура инертной композиции состоит из следующих компонентов, вес.%:

- соль пищевая 50-60
- алюминиевый порошок 20-30
- пластизольная связка
(соотношение сополимер:триацетин (0,4-0,6):1) 15-20
- стеклянные полые микросферы до 2%

(сверх указанной рецептуры).

Микросферы вводят в готовый состав постепенно небольшими порциями до достижения требуемой плотности. Необходимое количество микросфер в составе рассчитывается, исходя из значения истинной плотности микросфер, массы состава и требуемого значения плотности. Способ расчета приведен в примере 2.

Сопоставительный анализ признаков прототипа и заявляемого технического решения показывает, что заявленный состав отличается от составов ИЛА и ИЛП:

- меньшим содержанием пластизольного связующего;

- новым соотношением сополимера и пластификатора в пластизольном связующем;

- наличием стеклянных полых микросфер.

Использование вышеперечисленных признаков в предлагаемом изобретении позволяет получить следующее:

- повысить надежность эксплуатационных характеристик ГМИ за счет исключения выделение из отвержденного состава пластификатора;

- максимально приблизить плотность инертных пластизольных составов к плотности взрывчатых пластизольных составов за счет использования микросфер.

- увеличить срок хранения состава в ГМИ.

Для установления гарантийного срока хранения (ГСХ) составов были проведены ускоренные климатические испытания (УКИ): образцы (цилиндры размером 20×30 мм) последовательно подвергали воздействию климатических факторов:

- повышенной температуры среды - плюс (60±3)°C в течение 24 ч;

- пониженной температуры среды - минус (60±3)°C в течение 6 ч;

- изменениям температуры среды от плюс (25±3)°C до минус (15±3)°C с выдержкой при каждой температуре в течение 1 часа.

Количество переходов через 0°C - 8.

Приведенная последовательность соответствует одному циклу.

Количество циклов - 11.

Выделение пластификатора после испытаний не отмечено. Установлено, что прочность составов после УКИ возрастает, что свидетельствует об отсутствии их структурного разрушения. Физико-механические свойства ИПС до и после УКИ представлены в таблице 2.

По результатам УКИ установлена принципиальная возможность хранения заявляемого состава в течение 11 лет.

По результатам анализа уровня техники не выявлено аналогов, имеющих признаки, сходные с заявляемым решением, следовательно, можно считать, что заявляемый инертный пластизольный состав является новым и обладает достаточным изобретательским уровнем.

Ниже приведены экспериментальные и теоретические данные, подтверждающие стабильность состава и возможность эффективного регулирования его плотности полыми стеклянными микросферами.

Пример 1. Примером конкретного воспроизведения данного технического решения может служить состав, использовавшийся для наполнения габритно-массового имитатора серийного изделия. Состав содержал 1% микросфер. Плотность полученного состава - 1,81 г/см3. Использование указанного состава позволило получить габаритно-массовый имитатор требуемой массы. Имитатор прошел необходимый контроль и находится в эксплуатации более 1 года.

Пример 2. Регулирование плотности инертных пластизольных композиций осуществляется расчетным путем по формуле:

где mсф - масса микросфер, г;

m0 - масса состава без микросфер, г;

ρ - требуемое значение плотности состава, г/см3;

ρсф - истинная плотность микросфер, г/см3;

ρ0 - плотность состава без микросфер, г/см3.

Например, если плотность состава без микросфер - 1,92 г/см3, а требуемая плотность - 1,82 г/см3, то на каждый килограмм состава следует добавить следующее количество микросфер с плотность 0,31 г/см3:

mсф=1·(1,82/1,92-1)/(1-1,82/0,31)=0,01 кг.

Предложенный в данном изобретении способ регулирования плотности был успешно применен для получения состава с заданной плотностью. В готовый состав (240 кг) с плотностью 1,88 г/см3 вводились микросферы с плотностью 0,31 г/см3 в количестве 1% от массы состава. Перемешивание состава с микросферами осуществлялось в смесителе объемного типа в течение 30 минут. Как и предполагалось, плотность состава снизилась до требуемого значения - с 1,88 г/см3 до 1,80 г/см3.

Вышеизложенные сведения о заявляемом составе, охарактеризованном в формуле изобретения, свидетельствуют о возможности его осуществления с помощью известных средств и методов. Следовательно, заявляемый инертный состав соответствует условию промышленная применимость.

Таблица 1
Инертные пластизольные смеси ИЛИ и ИЛА
Наименование показателя Норма для смеси
ИЛП ИЛА
1. Внешний вид Пастообразная масса серого цвета
2. Массовая доля компонентов, %
- триацетин 16 17
- акриловый сополимер 5 6
- алюминиевый порошок 28 11
- натрий хлористый 51 66
- пудра алюминиевая (сверх 100%) 0,5 1
3. Плотность расчетная, г/см3 1,95 1,85
Таблица 2
Физико-механические свойства ИПС до и после УКИ
Показатель ИПС ИПС+1% микросфер
до УКИ после до УКИ после
Прочность при сжатии МПа 2,1 2,7 2,2 2,6
Модуль упругости, МПа 10,5 52,5 11,9 47,4
Относительная деформация при сжатии, % 24,7 10,9 21,0 14,2

1. Инертный пластизольный состав, содержащий соль пищевую, алюминиевый порошок, жидкий пластификатор, полимер полиакрилового ряда, отличающийся тем, что он содержит в качестве пластификатора - триацетин, в качестве полимера - сополимер метилметакрилата (ММА) и метакриловой кислоты (МА) в соотношении масс пластификатора и сополимера (0,4-0,6):1 при следующем содержании компонентов, мас.%:

соль пищевая 50-60
алюминиевый порошок 20-30
пластизольная связка, в том числе:
сополимер ММА с МА с триацетином
в соотношении: (0,4-0,6):1 15-20

2. Инертный состав по п.1, включающий стеклянные полые микросферы в количестве до 2 мас.%.



 

Похожие патенты:
Изобретение относится к области боеприпасов, а именно к блочным метательным зарядам для снаряжения безгильзовых и гильзовых патронов. .
Изобретение относится к области исследования и анализа материалов радиационными методами и может быть использовано в качестве имитатора взрывчатого вещества на основе гексогена или октогена.
Изобретение относится к области исследования и анализа материалов радиационными методами и может быть использовано в качестве имитатора азотосодержащего взрывчатого вещества.

Изобретение относится к имитаторам взрывчатого вещества (ВВ) для учебно-тренировочной кинологической деятельности при постановке собак на запах ВВ. .
Изобретение относится к баллиститным твердым ракетным топливам. .

Изобретение относится к взрывчатым веществам (ВВ). .
Изобретение относится к эмульгирующим составам для изготовления эмульсий «вода в масле», применяемым в производстве эмульсионных взрывчатых веществ. .
Изобретение относится к области эмульсионных взрывчатых веществ. .

Изобретение относится к взрывчатым веществам. .
Изобретение относится к порошкообразным взрывчатым веществам. .
Изобретение относится к ракетной технике, а именно разработке имитаторов смесевого твердого топлива (СТРТ), используемых при обкатке технологического оборудования опасных производств по изготовлению малогабаритных вкладных зарядов СТРТ массового производства, отработке процессов механической обработки этих изделий и обучении технического персонала

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества (ВВ) заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке. В качестве идентификаторов используют смесь полиорганосилоксанов с различными длинами молекулярных цепочек, в которой каждому одному техническому показателю соответствует идентификатор в виде полиорганосилоксана с соответствующей длиной молекулярной цепочки и соответствующим «временем выхода» («удерживания») на хроматограмме. Таким образом, в составе взрывчатого вещества формируется «химический штрих-код», считывание которого осуществляют на хроматограмме по принципу наличия или отсутствия компонента при определенном значении времени его «выхода» («удерживания»). Способ подходит для маркировки смесевых и индивидуальных ВВ, а также их компонентов, например, неорганических окислителей, в частности аммиачную селитру. Способ обеспечивает высокую достоверность идентификации ВВ при упрощении процесса определения его кода. 4 ил., 1 табл.
Каталитический охлаждающий агент для устройства пожаротушения с термоаэрозолем и способ его получения. Химический каталитический охлаждающий агент для термоаэрозолей включает: эндотермический охлаждающий материал: 50-95 масс.%; каталитическая добавка: 1-30 масс.%; технологическая добавка: 0,5-5 масс.%; связующий агент: 2-6 масс.%. Эндотермический охлаждающий материал представляет собой карбонат марганца, оксалат марганца, фосфат марганца, манганат калия, перманганат калия или композиционный эндотермический охлаждающий материал, состоящий из карбоната марганца и дополнительного охлаждающего агента. Каталитическая добавка представляет собой оксид метала или гидроксид. Технологическая добавка представляет собой стеарат, графит или их смесь. Связующий агент представляет собой композиционный раствор силиката щелочного металла и водорастворимого высокомолекулярного полимера. Заявлены также способы получения охлаждающего агента в форме крупных кусков, таблеток, сферических гранул или прутков ячеистого строения. По сравнению с известным уровнем техники является высокоэффективным и дает хороший охлаждающий эффект, позволяет снизить вторичное ухудшение свойств огнегасящего вещества и исключить присутствие токсичного газа в продукте огнегасящего вещества, чтобы снизить токсичность огнегасящего вещества и опасность его для окружающей среды. 4 н. и 9 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке. Для маркирования взрывчатого вещества осуществляют маркировку каждого отдельного компонента, входящего в смесь взрывчатого вещества. Маркирующую композицию для каждого отдельного компонента составляют из по крайне мере одного полимерного материала из ряда полиорганосилоксанов с длиной молекулярной цепочки, являющейся идентификатором, и которая отлична от длин молекулярных цепочек и величин вязкости полимерных материалов в маркирующих композициях других отдельных компонентов, составляющих смесь взрывчатого вещества. В качестве маркирующей композиции взрывчатого вещества используют набор маркирующих композиций отдельных компонентов смеси этого вещества. 2 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке. Для маркирования взрывчатого вещества осуществляют маркировку каждого отдельного компонента, входящего в смесь взрывчатого вещества. Маркирующую композицию для каждого отдельного компонента составляют из по крайне мере одного полимерного материала из ряда полиорганосилоксанов с длиной молекулярной цепочки, являющейся идентификатором, и которая отлична от длин молекулярных цепочек и величин вязкости полимерных материалов в маркирующих композициях других отдельных компонентов, составляющих смесь взрывчатого вещества. В качестве маркирующей композиции взрывчатого вещества используют набор маркирующих композиций отдельных компонентов смеси этого вещества. 2 з.п. ф-лы, 3 ил., 1 табл.
Наверх