Устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн инфракрасного диапазона

Устройство содержит источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, состоящий из двух частей, имеющих сопряженные поверхности, зафиксированный относительно первой части по ходу излучения элемент преобразования излучения в ПЭВ, приемник излучения. Приемник излучения размещен в плоскости падения излучения у края образца и подключен к измерительному прибору. Вторая часть образца выполнена съемной и в виде полуцилиндра, основание которого сопряжено с торцом первой части образца и ориентировано перпендикулярно треку ПЭВ. Ребро второй части образца, образованное ее основанием и цилиндрической поверхностью, находится на уровне направляющей поверхности первой части. Радиус R цилиндрической поверхности удовлетворяет условию 100λ<R<L/π, где λ - длина волны излучения в вакууме, L - длина распространения ПЭВ. Обе части образца и приемник размещены на подвижной платформе, способной перемещаться параллельно направляющей поверхности образца. Технический результат - повышение точности измерений. 1 ил.

 

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами, а именно к определению спектров поглощения как самой поверхности, так и ее переходного слоя, путем измерения длины распространения поверхностных электромагнитных волн (ПЭВ), направляемых этой поверхностью, в инфракрасном диапазоне (ИК) спектра и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в сенсорных устройствах и контрольно-измерительной технике.

Спектроскопия поверхности твердого тела - одна из основных областей применения ПЭВ [1]. В ИК-диапазоне применяют, главным образом, абсорбционную ПЭВ-спектроскопию, предполагающую измерение длины распространения ПЭВ L, достигающую в этом диапазоне 1000λ (где λ - длина волны излучения, возбуждающего ПЭВ), которая, поэтому, может быть измерена непосредственно. Причем, так как расстояние взаимодействия излучения с поверхностью в этом методе макроскопическое, то его чувствительность намного превышает чувствительность иных оптических методов контроля поверхности в ИК-диапазоне.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, фиксированный относительно поверхности элемент преобразования излучения в ПЭВ, перемещаемый вдоль трека ПЭВ элемент преобразования ПЭВ в объемную волну, приемник выходящего из второго элемента преобразования излучения и измерительный прибор, регистрирующий сигналы с выхода приемника [2]. Основным недостатком известного устройства является низкая точность измерений, не превышающая 10%, что обусловлено наличием паразитных приповерхностных объемных волн, порождаемых на первом элементе преобразования в результате дифракции падающего излучения, и вариациями оптической связи между ПЭВ и вторым элементом преобразования в процессе его перемещения.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, и ребром, перпендикулярным треку ПЭВ и образованным торцовой гранью образца и направляющей поверхностью, перемещаемый вдоль трека ПЭВ элемент преобразования излучения в ПЭВ, приемник излучения, зафиксированный относительно образца и размещенный в плоскости падения на уровне направляющей поверхности, и измерительный прибор, регистрирующий сигналы с выхода приемника [3]. Основным недостатком известного устройства является низкая точность измерений, обусловленная наличием паразитных приповерхностных объемных волн, порождаемых при дифракции падающего излучения на элементе преобразования, и вариациями оптической связи между ПЭВ и элементом преобразования в процессе его перемещения.

Наиболее близким по технической сущности к заявляемому устройству является устройство для измерения длины распространения ПЭВ ИК-диапазона, содержащее источник лазерного излучения, составной твердотельный образец, состоящий из двух примыкающих друг к другу плоскогранных частей, направляющих ПЭВ, вторая из которых является съемной, зафиксированный относительно образца элемент преобразования излучения в ПЭВ, фотодетектор, размещенный в плоскости падения у края образца и имеющий возможность передвижения вдоль линии пересечения плоскости падения и плоской поверхности образца, а также - измерительный прибор, регистрирующий сигналы с выхода детектора [4]. Основным недостатком известного устройства является низкая точность измерений, обусловленная наличием засвечивающих детектор паразитных приповерхностных объемных волн, порождаемых при дифракции падающего излучения на элементе преобразования и регистрацией интенсивности поля ПЭВ после пробега ими всего двух различных расстояний.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности измерений.

Технический результат достигается тем, что устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн (ПЭВ) инфракрасного диапазона содержит источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, состоящий из двух частей, имеющих сопряженные поверхности, зафиксированный относительно первой части по ходу излучения элемент преобразования излучения в ПЭВ, при этом вторая часть образца выполнена съемной, приемник излучения, размещенный в плоскости падения излучения у края образца и подключенный к измерительному прибору, причем вторая часть образца выполнена в виде полуцилиндра, основание которого сопряжено с торцом первой части образца и ориентировано перпендикулярно треку ПЭВ, ребро второй части образца, образованное ее основанием и цилиндрической поверхностью, находится на уровне направляющей поверхности первой части, а радиус R цилиндрической поверхности удовлетворяет условию 100λ<R<L/π, где λ - длина волны излучения в вакууме, L - длина распространения ПЭВ, при этом обе части образца и приемник размещены на подвижной платформе, способной перемещаться параллельно направляющей поверхности образца.

Повышение точности измерений достигается за счет пространственного разнесения на цилиндрической части образца ПЭВ и объемных приповерхностных волн, возникающих при дифракции излучения на элементе преобразования, что позволяет избежать в процессе выполнения измерений засветки приемника этими паразитными волнами.

На фиг.1 приведена схема заявляемого устройства, где 1 - источник лазерного (p-поляризованного монохроматического излучения), 2 - элемент преобразования излучения в ПЭВ, 3 - первая часть образца, 4 - вторая часть образца, 5 - приемник излучения, 6 - измерительный прибор, 7 - перемещаемая параллельно направляющей поверхности образца платформа, несущая обе части образца, приемник излучения 5 и измерительный прибор 6.

Заявляемое устройство работает следующим образом. Излучение лазерного источника 1 падает на элемент преобразования излучения 2 и, с некоторой эффективностью, преобразуется в ПЭВ, направляемые плоской поверхностью первой части образца 3. Дойдя до края первой части образца 3, ПЭВ переходят, практически без изменения своей интенсивности, на цилиндрическую поверхность второй части образца 4 и, направляемые этой поверхностью, достигают ее противоположного края. Дифрагируя на нем, ПЭВ трансформируются в объемную волну, детектируемую приемником 5. Сигнал I, вырабатываемый приемником излучения 5 и пропорциональный интенсивности поля ПЭВ на краю второй части образца 4, регистрируется измерительным прибором 6. Регистрацию сигнала выполняют по мере дискретного продвижения платформы 7 вдоль трека ПЭВ. Тогда длина распространения ПЭВ L может быть рассчитана по формуле [1]:

где x2 и x1 - расстояния, проходимые ПЭВ по образцу в произвольные моменты регистрации сигналов I1 и I2 с приемника 5, причем x1<x2. Выполнив измерения и расчеты значений L для большого числа расстояний x, пробегаемых ПЭВ, находят среднее значение L. Многократность измерений и усреднение также способствуют повышению точности определения L.

Ключевым моментом, обеспечивающим функционирование заявляемого устройства, является способность ИК ПЭВ преодолевать зазоры между сопряженными поверхностями проводящих образцов практически без потерь. Это явление исследовано в [5], где установлено, что в ИК-диапазоне эффективность перехода ПЭВ с одной металлической поверхности на другую составляет около 99% при расстоянии между краями поверхностей до 10λ. Такие зазоры между металлическими изделиями без труда достигаются шлифованием сопрягаемых поверхностей.

Второй важной особенностью ИК ПЭВ является факт незначительности их радиационных потерь при распространении по искривленной поверхности с радиусом кривизны R, превышающим λ более чем в 100 раз [6]. С другой стороны, протяженность второй части (с цилиндрической поверхностью) образца, равная πR, должна быть меньше длины распространения L, чтобы ПЭВ достигла края этой части и в конечном счете - приемника. Именно поэтому в формулу изобретения введено условие 100λ<R<L/π.

В качестве примера применения заявляемого устройства рассмотрим возможность измерения с его помощью длины распространения ПЭВ, генерируемой излучением с λ=20 мкм на поверхности напыленного алюминия, размещенного в воздухе. В качестве элемента преобразования излучения 2 лазерного источника 1 в ПЭВ выберем непрозрачный экран, край которого ориентирован параллельно плоской поверхности первой части образца 3 и расположен на расстоянии 10λ от нее. Длину первой части образца 3 положим равной 6 см. Вторую часть образца 4 выберем в виде полуцилиндра с радиусом R=1,5 см. Согласно [7] комплексная диэлектрическая проницаемость алюминия на данной λ равна εA1=-17925+i·7845. Тогда показатель поглощения ПЭВ (т.е. мнимая часть показателя преломления ПЭВ) в рассматриваемом примере будет равен 1,4·10-5, что соответствует уменьшению интенсивности ПЭВ при распространении по цилиндрической поверхности второй части образца 4 в 1,5 раза. Тогда, при изменении расстояния, пробегаемого ПЭВ по первой части 3 образца от 1 см до 5 см, полная длина пробега ПЭВ изменяется от 2,5π см до 6,5π см, а интенсивность ПЭВ, регистрируемая приемником излучения 5, уменьшается в 1,4 раза. Такое изменение интенсивности может быть надежно зарегистрировано современными фотоприемниками и согласно формуле (1) соответствует длине пробега ПЭВ L, равной 11,4 см. Причем регистрация интенсивности ПЭВ при изменении расстояния, пробегаемого ими по первой части образца 3, с некоторым шагом, позволяет выполнить многократные измерения L с последующим расчетом ее среднего значения.

Таким образом, по сравнению с прототипом заявляемое устройство позволяет повысить точность измерений как за счет полного устранения паразитных засветок приемника дифракционными спутниками ПЭВ, порождаемыми при дифракции излучения источника на элементе преобразования, так и в результате возможности многократного повторения измерений.

Источники информации

1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М.Аграновича и Д.Л.Миллса. - М.: Наука, 1985. - 525 с.

2. Жижин Г.Н., Москалева М.А., Шомина Е.В., Яковлев В.А. Селективное поглощение ПЭВ, распространяющейся по металлу в присутствии тонкой диэлектрической пленки // Письма в ЖЭТФ, 1976, т.24, вып.4, с.221-225.

3. Жижин Г.Н., Никитин А.К., Богомолов Г.Д., Завьялов В.В., Джонг Юнг Ук, Ли Банг Чол, Сеонг Хи Пак, Хек Джин Ча. Поглощение поверхностных плазмонов терагерцового диапазона в структуре "металл - покровный слой - воздух" // Оптика и спектроскопия, 2006, т.100, №5, с.798-802.

4. Жижин Г.Н., Мустафина О.М., Никитин А.К. Устройство для измерения длины распространения ПЭВ ИК-диапазона // Патент РФ на изобретение №2380664, Бюл. №3 от 27.01.2010 г. (прототип).

5. Nazarov M., Coutaz J.-L., Shkurinov A., Garet F. THz surface plasmon jump between two metal edges // Optics Communications, 2007, v.277, p.33-39.

6. K.Hasegawa, J.U.Nockel, and M.Deutsch. Surface plasmon polariton propagation around bends at a metal-dielectric interface // Applied Phys. Lett., 2004, v.84 (11), p.1835-1837.

7. Ordal M.A., Long L.L., Bell R.J. et al. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared // Applied Optics, 1983, v.22(7), p.1099-1120.

Устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн (ПЭВ) инфракрасного диапазона, содержащее источник лазерного излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, состоящий из двух частей, имеющих сопряженные поверхности, зафиксированный относительно первой части по ходу излучения элемент преобразования излучения в ПЭВ, при этом вторая часть образца выполнена съемной, приемник излучения, размещенный в плоскости падения излучения у края образца и подключенный к измерительному прибору, отличающееся тем, что вторая часть образца выполнена в виде полуцилиндра, основание которого сопряжено с торцом первой части образца и ориентировано перпендикулярно треку ПЭВ, причем ребро второй части образца, образованное ее основанием и цилиндрической поверхностью, находится на уровне направляющей поверхности первой части, а радиус R цилиндрической поверхности удовлетворяет условию 100λ<R<L/π, где λ - длина волны излучения в вакууме, L - длина распространения ПЭВ, при этом обе части образца и приемник размещены на подвижной платформе, способной перемещаться параллельно направляющей поверхности образца.



 

Похожие патенты:

Изобретение относится к способу определения золота в отходах производства элементов электронной техники методом атомно-абсорбционной спектрометрии (ААС). .

Изобретение относится к электротермическому атомизатору для определения благородных металлов. .

Изобретение относится к спектральным газоразрядным лампам для атомной абсорбции и предназначено для использования в спектрометрах абсорбционного типа. .

Изобретение относится к оптическим методам исследования тонких слоев на поверхности металлов и полупроводников, а именно к инфракрасной (ИК) спектроскопии диэлектрической проницаемости.

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами, а именно - к определению спектров поглощения как самой поверхности, так и ее переходного слоя путем измерения коэффициента затухания поверхностных электромагнитных волн (ПЭВ), направляемых этой поверхностью, в инфракрасной (ИК) области спектра, и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в контрольно-измерительной технике нанотехнологий, в лазерной и интегральной оптике.

Изобретение относится к области измерительной техники. .

Изобретение относится к инфракрасной спектроскопии поверхностей металлов и полупроводников

Изобретение относится к технике спектрального анализа и может найти применение при эмиссионных и атомно-абсорбционных измерениях в спектроанализаторах с дифракционными решетками и многоэлементными фотоприемниками

Изобретение относится к аналитическому приборостроению и может быть использовано для определения содержания химических элементов в пробах различных типов методом атомно-абсорбционной спектрометрии. Спектрометр содержит оптически связанные источник излучения с длиной волны, соответствующей резонансному поглощению определяемого элемента, поляризатор, оптомодулятор, фазовую пластину и атомизатор, расположенный в постоянном магнитном поле, оптически связанные монохроматор и приемник излучения, систему регистрации и обработки сигнала, электрически связанную с приемником излучения и синхронизованную с оптомодулятором, а также устройство преобразования излучения, оптически сопряженное с атомизатором и монохроматором, выполненное в виде оптически сопряженных второго поляризатора и жгута световодов с переменным профилем, причем входному торцу жгута световодов придана форма, совпадающая с профилем сечения пучка излучения, а выходному торцу придана вытянутая форма и он совмещен с входной щелью монохроматора. Изобретение обеспечивает повышение светосилы спектрометра и сокращение времени анализа. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области оптического приборостроения и касается спектрометра на основе поверхностного плазмонного резонанса. Спектрометр содержит последовательно расположенные на одной оптической оси источник излучения света с непрерывным спектром, коллиматор, поляризатор, цилиндрическую линзу или цилиндрическое зеркало, устройство нарушенного полного внутреннего отражения с отражающим элементом, диспергирующее устройство, фокусирующий объектив и светочувствительную фотоматрицу, установленную в фокусе объектива. Технический результат заключается в обеспечении возможности получения спектра поверхностного плазменного резонанса в непрерывном оптическом диапазоне длин волн в режиме реального времени и в повышении чувствительности устройства. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП). Геодезическая призма выполнена в виде конусной канавки, которая расположена на плоской поверхности образца и имеет сглаженные края. Ось канавки параллельна поверхности образца и перпендикулярна направлению распространения ППП. Размер канавки в направлении пучка меньше длины распространения ППП. При этом ось канавки расположена над поверхностью образца, а края канавки совпадают с прямолинейными частями линии пересечения поверхности образца и поверхности конуса канавки. Технический результат заключается в повышении эффективности и уменьшении габаритов устройства. 3 ил.

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП). Спектрометр содержит перестраиваемый по частоте источник р-поляризованного монохроматического излучения, плоское и цилиндрическое фокусирующее зеркала, твердотельный плоскогранный проводящий образец, элемент преобразования излучения источника в поверхностные плазмоны (ПП), размещенный в непоглощающей окружающей среде непрозрачный экран, ориентированный перпендикулярно треку ПП, и фотодетектор, сопряженный с устройством обработки информации и установленный на перемещаемой вдоль трека платформе. Обращенный к направляющей ПП грани исследуемого образца край экрана удален от нее на расстояние не меньше глубины проникновения поля ПП в окружающую среду. Спектрометр также содержит регулируемую линию задержки, поворачиваемый поляризатор, укрепленное на платформе плоское зеркало, отражающая грань которого примыкает к направляющей грани исследуемого образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив и установленную перед входным отверстием фотодетектора регулируемую диафрагму, лучеразделитель объемного излучения, расположенный на пути падающего на образец излучения на уровне наклонного зеркала. При этом торцовая грань образца, перпендикулярная плоскости падения излучения и смежная с направляющей гранью, имеет цилиндрическую форму поверхности, ось которой параллельна направляющей грани и лежит в плоскости, содержащей линию сопряжения цилиндрической и плоской граней, причем расстояние от этой линии до оси равно радиусу кривизны цилиндрической поверхности, а длина дуги, содержащей трек ПП на этой поверхности, меньше десяти длин распространения ПП. Изобретение обеспечивает повышение точности измерений за счет повышения соотношения сигнал/шум. 2 ил.

Предлагается 3-бутил-5-окси-5-перфтороктил-4,5-дигидро-1H-пиразол-1-карботиоамид приведенной ниже формулы(1) в качестве материала стандартного образца состава для количественного определения фтора (массовая доля от 50 до 70%) и серы (массовая доля от 5 до 13%) в органических соединениях различной природы. Кроме того, предлагается способ его получения, заключающийся во взаимодействии литий(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-гептадекафторпентадекадионата-9,11) с тиосемикарбазидом гидрохлоридом в мольном соотношении 1:1 при кипячении в этаноле. 2 н.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к области геологии и может быть использовано при поиске скоплений углеводородов. Предложен способ обнаружения углеводородов с использованием подводного аппарата, снабженного одним или несколькими измерительными компонентами. Способ включает в себя навигацию подводного аппарата в акватории; мониторинг водной массы измерительными компонентами, связанными с подводным аппаратом, для сбора данных измерений. При этом измерительные компоненты содержат масс-спектрометр и флуорометр для определения концентраций химических компонентов масс-спектрометром и флуорометром. Собранные данные из подводного аппарата используют для определения, присутствуют ли углеводороды, и определения местоположения их. Технический результат – повышение точности получаемых данных. 3 н. и 27 з.п. ф-лы, 5 ил.

Способ определения присутствия или концентрации анализируемого вещества в пробе текучей среды, находящейся в контейнере, включает: (a) просвечивание контейнера вдоль первого участка, имеющего первую длину пути, для получения первого измерения интенсивности света, переданного вдоль первой длины пути, (b) определение того, что первое измерение оказалось за пределами заранее определенного динамического диапазона переданной интенсивности света, (c) перемещение пробы жидкости в указанном контейнере на другой участок с другой длиной пути, и (d) просвечивание указанного контейнера вдоль другого участка для получения другого измерения интенсивности света, переданного через другую длину пути. При этом по выбору повторяют шаги (с) и (d) в указанном контейнере, пока измерение интенсивности света не будет находиться в пределах заранее определенного динамического диапазона, определяя, таким образом, присутствие или концентрацию анализируемого вещества. Технический результат – повышение надежности распознавания анализируемого вещества. 2 н. и 17 з.п. ф-лы, 150 ил., 16 табл.

Изобретение относится к области оптических измерений и касается способа определения отклонения длины оптического пути образца. Способ включает в себя облучение образца электромагнитным излучением при ряде волновых чисел, определение поглощения электромагнитной энергии в образце при ряде волновых чисел, определение первого волнового числа, связанного с первым уровнем поглощения полосы поглощения, и второго волнового числа, связанного со вторым уровнем поглощения полосы поглощения, определение разности между первым волновым числом и вторым волновым числом и определение отклонения длины оптического пути на основе полученной разности. 2 н. и 14 з.п. ф-лы, 7 ил.
Наверх