Способ определения массовой доли основного вещества в кристаллическом глиоксале



Способ определения массовой доли основного вещества в кристаллическом глиоксале
Способ определения массовой доли основного вещества в кристаллическом глиоксале

 


Владельцы патента RU 2470291:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (RU)
Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" (RU)

Изобретение относится к области аналитической химии, а именно к способу определения массовой доли основного вещества в кристаллическом глиоксале. Способ включает газохроматографическое определение глиоксаля в растворе. Предварительно проводят растворение кристаллического глиоксаля в воде при температуре 53-57°С, отбор пробы водного раствора 34,7-36,7 мг с последующим прибавлением 9,5-11,5 мг бензилового спирта, 2,0 мл этанола и 80-100 мг о-фенилендиамина, выдерживанием пробы в течение 20 мин. Затем с помощью газового хроматографа проводят анализ с заданной скоростью потока газа-носителя при заданной температуре термостата колонки, температуре испарителя и температуре детектора. После чего осуществляют определение площадей хроматографических пиков бинзилового спирта и хиноксалина и расчет содержания массовой доли основного вещества в кристаллическом глиоксале. Используют следующее соотношение компонентов, мас.%: кристаллический глиоксаль 37-43; вода 63-57. Техническим результатом изобретения является повышение воспроизводимости и точности определения глиоксаля. 5 табл.

 

Изобретение относится к области аналитической химии, а именно к анализу кристаллического глиоксаля и продуктов на его основе, может применяться в производственной деятельности (при потоковом производственном контроле, выходном контроле качества).

Известен способ одновременного качественного и количественного определения карбоновых кислот и альдегидов методом газожидкостной хроматографии (Патент РФ №2393469, МПК G01N 30/00, G01N 31/00. - опубл. 27.06.2010). В настоящем патенте рассматривается метод количественного хроматографического определения концентраций альдегидов и карбоновых кислот при их совместном присутствии в водных растворах. Определение компонентов осуществляется путем предварительной обработки пробы дериватизирующим агентом (трибутилборат в присутствии концентрированной соляной кислоты), обработки реакционной смеси насыщенным раствором гидрокарбоната натрия, дальнейшей экстракцией гексаном в присутствии ацетонитрила и хроматографании.

Недостатком предлагаемого метода является сложность пробоподготовки, включающей дериватизацию и экстракцию. Требуется точная стандартизация действий при калибровке и проведении анализа. Так же распределение между водой и гексаном компонентов многокомпонентной смеси зависит от состава и может быть различным при отличающихся составах смеси, наличии примесей и различных диапазонах измеряемых концентраций. Предлагаемый авторами патента метод может использоваться для определения массового содержания глиоксаля в растворах невысокой концентрации. В случае же анализа кристаллического глиоксаля получаемые рабочие растворы имеют высокую концентрацию (20-40%). В области высоких концентраций глиоксаль в водных растворах существует в виде ди- и тримеров [Whipple, E. В. (1970). "Structure of Glyoxal in Water". J. Am. Chem. Soc. 90: 7183-7186]. При этом доступными для дериватизации оказываются лишь концевые альдегидные группы. Поэтому требуются иные подходы при анализе кристаллического глиоксаля.

Одним из распространенных методов качественного и количественного определения альдегидов в водных растворах является метод высокоэффективной жидкостной хроматографии (ВЭЖХ). Перед определением глиоксаль дериватизируется с помощью 2,4-динитрофенилгдразина (DNPH) [Koichi Nakajima, Kyuji Ohta, Toufik A. Mostefaoui, Wen Chai, Takamitsu Utsukihara, C. Akira Horiuchi, Masahiko Murakami Glyoxal sample preparation for high-performance liquid chromatographic detection of 2,4-dinitro-phenylhydrazone derivative: Suppression of polymerization and mono-derivative formation by using methanol medium, Journal of Chromatography A, Volume 1161, 2007, p.338-341] либо 3-метил-2-безнотиозолинон гидразоном (МВТН) [Yamei Zhu, Xiaoli Yao, Shaohui Chen, Qun Cut and Haiyan Wang HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone, Frontiers of Chemical Science and Engineering Volume 5, Number 1, 117-121]. Производные альдегидов в данном случае характеризуются хорошим поглощением и могут быть определены с помощью фотометрического детектора. Данная группа методов характеризуется высокой чувствительностью и используется для определения следовых количеств альдегидов.

К недостаткам метода можно отнести высокую стоимость жидкостной хроматографии, необходимость использования реактивов повышенной чистоты. Как и в аналоге 1, одной из стадий анализа является экстракция, что вносит дополнительную погрешность в анализ. Еще одним недостатком является особенность работы фотометрических детекторов в области высоких концентраций. Зависимость пропускания от концентрации раствора носит нелинейный характер и при некоторой концентрации выходит на т.н. “плато”. В таком случае требуется дополнительное разведение пробы до рабочего диапазона детектора.

Известен способ определения компонентов реакции каталитического окисления этиленгликоля в глиоксаль методом газовой хроматографии, выбранный в качестве прототипа (Е.Ю.Яковлева, В.Ю.Белоцерковская Определение компонентов реакции каталитического окисления этиленгликоля в глиоксаль методом газовой хроматографии. Журнал аналитической химии, 2010, том 65, №8, с.851-855). В настоящей работе рассматривается способ определения концентраций компонентов реакции каталитического окисления этиленгликоля в глоиксаль (глиоксаля, формальдегида, этиленгликоля, ацетальдегида, этановой кислоты) методом газовой хроматографии. Концентрация компонентов устанавливается исходя из соотношения площадей хроматографических пиков определяемых компонентов и известного количества внутреннего стандарта, вводимого в пробу (в данной работе использовался н-пропанол). Разделение компонентов осуществляется в условиях программируемого повышения температуры на полярной неподвижной фазе Порапак N и неполярных полимерных сорбентах (Хромосорб 102, 106, 108, Порапак QS, Хайсеп Q и Хайсеп D).

Недостатком настоящего метода является нестабильность анализа, заключающаяся в изменении времени выхода компонентов при последовательных анализах. Нестабильность последовательных хроматограмм не позволяет использовать данный метод для количественного анализа проб, содержащих глиоксаль. Авторами работы анализировались модельные пробы, содержащие глиоксаль, формальдегид и этиленгликоль. Известно, что с течением времени в водных растворах происходит ди-, три- и полимеризация глиоксаля. Это проявляется так же в присутствии других альдегидов, таких как формальдегид. В связи с тем что в данном методе используется прямое определение глиоксаля, в случае его полимеризации количество глиоксаля, определяемого в виде мономерной формы, будет занижено.

Кристаллический глиоксаль представляет собой полимер глиоксаля, поэтому для количественного определения глиоксаля в кристаллическим глиоксале методом газовой хроматографии необходимо выполнить ряд серьезный доработок и изменений.

Задачей настоящего изобретения является разработка способа определения массовой доли основного вещества в кристаллическом глиоксале, позволяющего повысить воспроизводимость и точность определения глиоксаля.

Поставленная задача решается тем, что способ определения массовой доли основного вещества в кристаллическом глиоксале включает газохроматографическое определение глиоксаля в растворе, но в отличие от прототипа, предварительно проводят растворение кристаллического глиоксаля в воде при температуре 53-57°С, отбор пробы водного раствора 34,7-36,7 мг с последующим прибавлением 9,5-11,5 мг бензилового спирта, 2,0 мл этанола и 80-100 мг о-фенилендиамина, выдерживанием пробы в течение 20 мин, с дальнейшим вводом в испаритель газового хроматографа с помощью микрошприца и проведением анализа со скоростью потока газа-носителя: азота - 28-32 мл/мин, или водорода - 38-42 мл/мин, или воздуха - 490-520 мл/мин, при температуре термостата колонки 135-145°С, температуре испарителя 195-205°С и температуре детектора 150°С с использованием хроматографической колонки длиной 1,6 м, заполненной сорбентом Reoplex-400, нанесенным на носитель Chromaton N, с последующим определением площадей хроматографических пиков бинзилового спирта и хиноксалина и расчетом содержания массовой доли основного вещества в кристаллическом глиоксале, при следующем соотношении компонентов, мас.%:

кристаллический глиоксаль 37-43
вода 63-57

Метод анализа основан на количественном хроматографическом определении глиоксаля в виде хиноксалина методом внутреннего стандарта. Хиноксалин образуется в спиртовом растворе глиоксаля при взаимодействии с о-фенилендиамином:

Концентрация глиоксаля устанавливается исходя из измерения соотношения площадей хроматографических пиков хиноксалина и известного количества внутреннего стандарта, введенного в пробу. В качестве стандарта используется бензиловый спирт. Для измерений используется газовый хроматограф Хроматэк “Кристалл 5000.1” с пламенно-ионизационным детектором, микрошприц МШ-10 по ТУ 2833106, весы аналитические типа А-100 А, класс точности 2, пипетка на 2 мл по ГОСТ 29169, виалы на 15-20 мл. Разделение компонентов смеси производят с применением стеклянной газохроматографической колонки длиной 1.6 м, заполненной сорбентом Reoplex-400, нанесенным на носитель Chromaton N. Пробу кристаллического глиоксаля 0,4±0,03 г переносят в виалу на 15 мл и взвешивают (mпр.кр) с точностью до 4 знака грамма. Затем прибавляют 0,6±0,03 г дистиллированной воды и проводят повторное взвешивание

Полученную смесь в виале герметично закрывают резиновой пробкой и помещают в термостат при температуре 55±2°С и выдерживают до полного растворения кристаллического глиоксаля (20 мин). После растворения раствору дают остыть до комнатной температуры. На аналитических весах взвешивают 34,7±1 мг полученного водного раствора в виалу объемом 15 мл (предварительно взвешенную). В эту же виалу взвешивают 10,7±1 мг бензилового спирта и 80-100 мг о-фенилендиамина, затем пипеткой на истечение добавляют в полученную смесь 2 мл этилового спирта.

Полученную смесь выдерживают в течение 20 мин до полного растворения кристаллов о-фенилендиамина. Устанавливают следующие параметры работы хроматогрфа: температура детектора - 150°С, температура испарителя - 200°С, температура термостата хроматографической колонки - 140°С, скорость подачи газа носителя (азота) - 30 мл/мин, скорость подачи водорода (для детектора) 40 мл/мин, скорость подачи кислорода (для детектора) 500 мл/мин. Приготовленную смесь в количестве 1 мк/л микрошприцом МШ-10 вводят через головку испарителя, прокалывая резиновую мембрану. Перед вводом смеси шприц промывают сначала этиловым спиртом 10 раз, затем анализируемым раствором (смесью) не менее 10 раз. Порядок выхода пиков на хроматограмме: этиловый спирт (растворитель) -бензиловый спирт - хиноксалин. Ориентировочное время выхода бензилового спирта 10 мин, хиноксалина 12 мин. Точное время выхода глиоксаля (хиноксалина) и бензилового спирта определяется по чистым компонентам, либо методом добавок.

Массовое содержание глиоксаля в кристаллическом гилоксале рассчитывают исходя из соотношения площадей хроматографических пиков хиноксалина и стандарта (бензилового спирта) по формуле:

где Сго - массовая доля глиоксаля в кристаллическом глиоксале, %;

mпр.ж - масса пробы раствора кристаллического глиоксаля, мг;

Sx - площадь хроматографического пика хиноксолина;

Sст - площадь хроматографического пика бензилового спирта (стандарта);

a,b - коэффициенты уравнения градуировочной зависимости;

mст - масса бензилового спирта (стандарта), мг;

mпр.кр - масса навески кристаллического глиоксаля, г;

- масса дистилированной воды, г

Перед проведением измерений выполняют градуировку хроматографа путем определения зависимости отношения масс хиноксалина и внутреннего стандарта в пробе от отношения площадей их хроматографических пиков. Готовят 8-10 растворов глиоксаля с известной концентрацией в диапазоне от 5 до 40% мас.

Для установления градуировочной зависимости растворы анализируют аналогично раствору кристаллического глиоксаля, определяя соотношение площадей хроматографических пиков определяемого компонента и внутреннего стандарта. Далее строят график зависимости отношения масс глиоксаль/стандарт (бензиловый спирт) (mх/mст) от отношения площадей пиков хиноксалин/стандарт (Sx/S). Полученную зависимость аппроксимируют уравнением вида и применяют при дальнейших анализах. При необходимости могут быть применены другие аппроксимирующие функции.

Пример осуществления изобретения приведен ниже.

Пример 1.

Была взята навеска кристаллического глиоксаля 0,3934 г, растворена в 0,6122 г воды при температуре 55°С в жидкостном термостате. Из полученного водного раствора была отобрана проба на анализ (35,1 мкг), прибавлен бензиловый спирт (11,1 мкг), этанол (2 мл), о-фенилендиамин (~100 мг). Смесь была выдержана в течение 20 минут при комнатной температуре. Затем 1 мкл пробы был введен в испаритель хроматографа. Параметры хроматографа задавались согласно предлагаемому методу. В результате анализа были определены площади хроматографических пиков хиноксалина и бензилового спирта. Исходя из полученных площадей хроматографических пиков было вычислено содержание основного вещества в пробе кристаллического глиоксаля. В таблице 1 приведен результат анализа пробы кристаллического глиоксаля.

Таблица 1
Площадь пика хиносолина, отн.ед. Площадь пика бензилового спирта, отн. ед. Массовая доля основного вещества в кристаллическом глиоксале, % мас.
194482,4 109420,5 67,08

Заявленный способ позволяет производить определение массовой доли основного вещества в кристаллическом глиоксале и улучшает стабильность, воспроизводимость и точность его определения в водных растворах.

Одним из преимуществ заявленного изобретения является стабильность времени выхода глиоксаля при последовательных определениях в широком диапазоне концентраций определяемого компонента. В таблице 2 представлены времена выхода хиноксалина для различных концентраций глиоксаля в растворе.

Таблица 2
1 2 3 4 5 6
Время выхода, мин
11,66 11,66 11,64 11,65 11,53 11,56
Концентрация глиоксаля, % мас.
20,1 0,6 38,4 9,8 1,5 0,1

Для установления точности и воспроизводимости анализа по предлагаемому методу, а так же стабильности градуировочных характеристик был проведен эксперимент по определению массовой доли глиоксаля в модельных водных растворах глиоксаля в рабочем диапазоне концентраций. Для каждого раствора выполнялось три серии измерений (в разные дни) по три параллельных определения. Таким образом, стабильность анализа подтверждается высоким согласием результатов для различных серий, а высокая воспроизводимость - результатами параллельных определений в одной серии. Точность анализа подтверждается согласием среднего значения измеренных концентраций с концентрацией приготовленных модельных растворов. В таблице 3 представлены результаты параллельных определений концентрации глиоксаля в модельных растворах.

Таблица 3
Номер модельного раствора Содержание массовой доли глиоксаля в рабочей пробе Результат анализа, % мас.
Номер серии
1 2 3
1 4,88 4,84 4,91
1 5,0% 2 5,06 5,06 5,02
3 4,98 4,91 5,00
1 15,06 15,59 15,59
2 15,1% 2 15,00 15,20 15,08
3 14,98 15,05 15,02
1 19,82 19,87 19,85
3 20,0% 2 20,46 20,45 20,50
3 20,05 19,98 19,87
1 30,16 30,08 30,36
4 30,6% 2 30,10 30,19 30,12
3 30,19 30,24 30,18
1 39,27 39,05 39,09
5 40,0% 2 40,02 39,9 39,7
3 39,27 39,5 39,4

Для контроля стабильности, точности и воспроизводимости анализа раствор, содержащий 39,3% глиоксаля, анализировался в течение 6 недель.

Выполнялось по два параллельных определения. В таблице 4 приведены результаты анализа раствора глиоксаля в течение пяти недель.

Таблица 4
Концентрация глиоксаля (измерение 1), C1, % мас. Концентрация глиоксаля (измерение 2), С2, % мас. Концентрация глиоксаля (среднее), , % мас. Точная концентрация глиоксаля в анализируемом растворе, А, % мас. Абсолютное отклонение, ,% мас.
Неделя
1 39,0 39,0 39,0 0,3
2 39,2 39,2 39,2 0,1
3 38,8 38,9 38,8 39,3 0,5
4 39,3 39,2 39,2 0,1
5 39,5 39,2 39,3 0,0

Точность метода дополнительно подтверждалась экспериментально методом добавок. К 0,9462 раствора с содержанием 9,8% было прибавлено 0,5406 г раствора, содержащего 38,0% глиоксаля. Раствор с добавкой был так же проанализирован по предлагаемому методу. В таблице 5 приведены результаты анализа пробы глиоксаля с добавкой.

Таблица 5
Исходная концентрация глиоксаля, % мас. Расчетная концентрация глиоксаля с добавкой, % мас. Измеренная концентрация глиоксаля в растворе с добавкой, % мас. Введено, % мас. Найдено, % мас.
9,8 20,7 20,5 10,9 10,7

Таким образом, заявляемый способ практически реализуем и позволяет решить поставленную задачу.

Способ определения массовой доли основного вещества в кристаллическом глиоксале, включающий газохроматографическое определение глиоксаля в растворе, отличающийся тем, что предварительно проводят растворение кристаллического глиоксаля в воде при температуре 53-57°С, отбор пробы водного раствора 34,7-36,7 мг с последующим прибавлением 9,5-11,5 мг бензилового спирта, 2,0 мл этанола и 80-100 мг о-фенилендиамина, выдерживанием пробы в течение 20 мин, с дальнейшим вводом в испаритель газового хроматографа с помощью микрошприца и проведением анализа со скоростью потока газа-носителя: азота - 28-32 мл/мин, или водорода - 38-42 мл/мин, или воздуха - 490-520 мл/мин, при температуре термостата колонки 135-145°С, температуре испарителя 195-205°С и температуре детектора 150°С с использованием хроматографической колонки длиной 1,6 м, заполненной сорбентом Reoplex-400, нанесенным на носитель Chromaton N, с последующим определением площадей хроматографических пиков бинзилового спирта и хиноксалина и расчете содержания массовой доли основного вещества в кристаллическом глиоксале при следующем соотношении компонентов, мас.%:

кристаллический глиоксаль 37-43
вода 63-57


 

Похожие патенты:

Изобретение относится к способам, используемым при гидрохимическом определении содержания газов, и может быть использовано при специальных газометричееких исследованиях в акваториях, при которых осуществляют извлечение газов из проб воды и осадков и их последующий анализ методами газовой хроматографии.

Изобретение относится к области фармацевтической, пищевой и химической отраслей промышленности и может быть использовано для контроля качества пищевых продуктов, косметических средств и биологически активных добавок к пище по содержанию рутина (витамина Р).

Изобретение относится к области аналитической химии, а именно к инструментальным оптическим методам анализа. .

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств, конкретно путем разделения на составные части (компоненты) с использованием адсорбции и их масс-спектрометрического исследования.

Изобретение относится к устройствам для разделения или очистки веществ методами жидкостной хроматографии. .

Изобретение относится к области приборов для анализа состава вещества, а именно к потоковым хроматографам для анализа состава газов, в частности природного газа, например, на газораспределительных и газоизмерительных станциях при транспортировке газа по трубопроводам.

Изобретение относится к ветеринарной токсикологии и санитарии, а именно к определению остаточных количеств имидаклоприда в органах или тканях животных при подозрении на отравление инсектицидом, а также продуктах животного происхождения.

Изобретение относится к медицинским токсикологическим исследованиям, в частности к санитарной токсикологии. .

Изобретение относится к области газового анализа и может быть использовано для градуировки газоаналитической аппаратуры, в частности для калибровки газохроматографических детекторов, создания градуировочных газовых смесей при разработке методов анализа объектов окружающей среды и в токсикологических исследованиях, а также в различных производствах, где необходимо создание постоянных во времени концентраций летучих веществ в инертном газе-разбавителе.

Изобретение относится к аналитической химии, а именно к способам определения содержания свободных альдегидов в альдегидсодержащих смолах и полимерах

Изобретение относится к области анализа небиологических материалов физическими и химическими методами и может быть использовано при решении задач экологического мониторинга на объектах хранения и уничтожения химического оружия на бывших предприятиях по производству отравляющих веществ

Изобретение относится к способам исследования материалов с использованием газовой хроматографии в сочетании с квадрупольной масс-спектрометрией (далее - ГХ/МС) и может быть использовано в промышленных и научно-исследовательских лабораториях при исследовании качества технического углерода (промышленной сажи)

Изобретение относится к криофокусирующим устройствам для хроматографического анализа, предназначенным для охлаждения части капилляра хроматографической колонки и его быстрого нагрева с целью сорбции (концентрирования) компонентов анализируемой смеси за счет охлаждения на небольшом участке в начале хроматографической колонки и последующей десорбции за счет нагрева этого участка капилляра

Изобретение относится к хроматографическому анализу различных химических соединений и может быть использовано в медицине, биологии, экологии и в особенности при допинговом контроле

Изобретение относится к медицинским токсикологическим исследованиям, в частности к санитарной токсикологии

Изобретение относится к области аналитической химии и может быть использовано в медицинских, ветеринарных и других исследованиях для определения троксерутина, декспантенола, бензокаина и метилпарагидроксибензоата в лекарственных препаратах

Изобретение относится к аналитической химии органических соединений (концентрирование и определение) и может быть использовано для санитарно-эпидемиологического контроля питьевых вод, воды объектов, имеющих рыбохозяйственное значение, а также степени очистки сточных вод различных химических производств

Изобретение относится к способу оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел, включающий проведение параллельных отборов проб воздуха гермокабины путем его прокачки через патроны с сорбентом с последующим наземным газохроматографическим анализом на колонках разной селективности и полярности для идентификации компонентов-примесей
Наверх