Способ определения дозы электромагнитного излучения промышленной частоты



Способ определения дозы электромагнитного излучения промышленной частоты
Способ определения дозы электромагнитного излучения промышленной частоты

 


Владельцы патента RU 2470313:

Козлов Владимир Константинович (RU)
Сабитов Ильдар Хайдарович (RU)
Сабитов Айдар Хайдарович (RU)

Изобретение относится к электротехнике, в частности к контролю облучения электромагнитными полями. Способ определения дозы облучения электромагнитными полями промышленной частоты заключается в определении дозы облучения при помещении измерительной антенны-датчика в измеряемое поле и наведение токов и напряжений, разряжающих аккумуляторную батарею пропорционально полю и времени воздействия. Оценка разряда аккумуляторной батареи производится применительно к электромагнитным полям промышленной частоты, в режиме реального времени используя микропроцессор, а степень разряда аккумуляторной батареи, пропорциональная дозе облучения, определяется путем определения параметров аккумуляторной батареи. Технический результат заключается в возможности измерения дозы в режиме реального времени без измерения напряженности поля и определения зон с различной интенсивностью. 2 ил.

 

Изобретение относится к электротехнике, в частности к контролю облучения электромагнитными полями людей, осуществляющих свою деятельность в промышленных и гражданских объектах.

Известен способ определения времени допустимого пребывания человека в электромагнитном поле СанПиН 2.2.4.1191-03. Способ основан на измерении напряженности электрических и магнитных полей и определении зон с различной интенсивностью, с дальнейшими рекомендациями по возможному пребыванию человека в зонах с различной интенсивностью. Однако использование данного способа требует проведения трудоемких и длительных по времени операций: проведение измерений, «виртуальное» разделение помещения на зоны с различной интенсивностью полей и выдачей соответствующих рекомендаций по возможному времени нахождения в помещении. Данный способ не позволяет контролировать время нахождения человека в полях с различной интенсивностью в режиме реального времени, который не дает нам информацию о дозе, то есть интегральной характеристике, равной сумме произведений интенсивности поля на интервал времени, в пределах которого поле постоянно, использование которой обеспечивает «накопление» последствий воздействия порций излучения как различной интенсивности, так и различной продолжительности.

В основу изобретения положена задача создания способа измерения дозы в режиме реального времени без отдельного измерения напряженности поля и определения зон с различной интенсивностью.

Технический результат достигается тем, что в способе измерения дозы облучения оценка поля производится датчиком поля, а дозу вычисляют в зависимости от параметров напряженности поля и времени.

Использование метода измерения дозы позволяет исключить необходимость измерения напряженности поля и контроля времени пребывания в полях с различной интенсивностью.

Определение дозы посредством разряда аккумуляторной батареи позволяет исключить расчеты и полностью автоматизировать процесс измерения. Это осуществляется путем наведения в датчике поля тока и напряжения, пропорционального полю, которые разряжают аккумуляторную батарею.

Сущность изобретения поясняется на фиг.1.

На фиг.1 представлена схема устройства для осуществления способа измерения получаемой дозы облучения от электромагнитных полей промышленной частоты, где 1 - датчик электромагнитного поля, 2 - устройство для формирования параметров тока и напряжения, пропорциональных полю, 3 - аккумуляторная батарея, 4 - анализатор параметров дозы, 5 - дисплей для вывода информации.

Способ измерения дозы облучения осуществляется следующим образом.

Датчик 1 помещают в электромагнитное поле, в элементе 2 производится формирование сигналов, пропорциональных напряженности поля, производящих разряд аккумуляторной батареи 3, в зависимости от интенсивности поля, анализатором 4, производится контроль параметров дозы и дальнейший вывод на дисплей 5.

Использование предлагаемого способа не требует больших материальных затрат, а его реализация проста в эксплуатации. На фиг.2 приведена зависимость изменения дозы облучения от времени D=f(t).

Способ измерения напряженности электромагнитного поля, заключающийся в помещении измерительной антенны-датчика в измеряемое поле и регистрации тока и напряжения, наводимых измеряемым электромагнитным полем на элементе нагрузки приемной антенны-датчика, отличающийся тем, что при помещении измерительной антенны-датчика в измеряемое поле наводящие токи и напряжения разряжают аккумуляторную батарею пропорционально полю и времени воздействия, а измерение дозы облучения осуществляется путем контроля параметров аккумуляторной батареи.



 

Похожие патенты:

Изобретение относится к микроволновой технике. .

Изобретение относится к области антенных измерений и может быть использовано для высокоточного определения местоположения и мощностей источников излучения однопозиционной активной или пассивной локационной системой.

Изобретение относится к индикации и измерениям напряженности электрического и магнитного полей промышленной частоты. .

Изобретение относится к устройствам для измерения или индикации электрических величин. .

Изобретение относится к микроволновой радиометрии. .

Изобретение относится к микроволновой радиометрии. .

Изобретение относится к микроволновой радиометрии. .

Изобретение относится к технике радиоизмерений и может быть использовано для определения параметров радиотехнических систем, объединенными термином «случайные антенны».

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем выявления возможных угроз по формированию каналов утечки акустической (речевой) информации через волоконно-оптические системы связи и может быть использовано в системах защиты конфиденциальной речевой информации.

Изобретение относится к электромагнитным испытаниям транспортных средств на уровень излучаемой ими напряженности электромагнитного поля

Изобретение относится к области измерений и контроля уровней электромагнитных полей, создаваемых в помещениях различными источниками электромагнитных излучений (ЭМИ), и может быть использовано для определения их степени влияния на возможность пребывания в различных зонах этих помещений

Изобретение относится к микроволновой радиометрии и может использоваться в радиотермографии для измерения глубинных (профильных) температур объектов по их собственному радиоизлучению

Изобретение относится к радиотехнике и предназначены для поиска и обнаружения источников излучения, определения его местоположения, а также для мониторинга уровня основного и побочных радиоизлучений разного рода бытовых, медицинских и промышленных установок, в том числе наземных РЛС различного назначения в диапазонах дециметровых и сантиметровых радиоволн

Изобретение относится к области приборостроения, а именно к сканирующим радиометрам для зондирования земной поверхности и мирового океана. Радиометр содержит подвижную антенну, генератор опорного сигнала, смеситель, гетеродин, УНЧ с прямым и инверсным выходами, N синхронных детекторов и квадратичный детектор, вход которого подключен к выходу смесителя с усилителем промежуточной частоты, подсоединенного одним входом к выходу гетеродина, два источника опорного излучения, вычитатель, управляемый делитель, N интеграторов, N-1 сумматоров и N-1 умножителей, синхронные детекторы. При этом выход квадратичного детектора соединен со входом УНЧ, N-1 умножителей подключены одними входами через соответствующие интеграторы к выходам соответствующих синхронных детекторов, другими входами - к выходу управляемого делителя и выходами к одним входам соответствующих сумматоров, управляемый делитель подключен управляющим входом к выходу N-го синхронного детектора через N-й интегратор и информационным входом к выходу вычитателя. Кроме того, дополнительно введены датчик скорости носителя, датчик высоты носителя, второй управляемый делитель, усилитель, вход которого соединен с выходом второго управляемого делителя, а выход с управляющим входом интеграторов, N-1 аналоговых ключей, выходы которых соединены с выходами N-1 сумматоров, а управляющие входы соединены с выходами дешифратора, АЦП, блок вторичной обработки, вход которого соединен с выходом АЦП, вход прерывания которого соединен с выходом задающего генератора, а его выход является выходом устройства. Технический результат заключается в улучшении детальности обзора и повышения точности измерения радиояркостной температуры. 1 з.п. ф-лы, 3 ил.

Предлагаемый способ позволяет определять местоположения и мощности источников излучения по измеренной пространственной корреляционной матрице принимаемых сигналов на апертуре приемной антенной решетки (AP). Достигаемый технический результат - упрощение измерений и сокращение времени измерений за счет исключения операции формирования диаграммы направленности антенны в заданных направлениях, а также повышение информативности получаемых данных за счет оценивания взаимно-корреляционных характеристик сигналов источников. Способ заключается в разбиении контролируемой области пространства на элементы разрешения по местоположению, определении коэффициентов ослабления сигналов за счет распространения от каждого элемента разрешения до приемной AP α ( r → k ) и временных интервалов распространения сигналов от каждого элемента разрешения до каждого элемента AP τkn, где k - номер элемента разрешения, n - номер элемента AP, определении коэффициентов пространственного преобразования сигналов w k n = α ( r → k ) e − j ω τ k n , где ω - несущая частота сигналов источников, j - комплексная единица, измерении пространственной корреляционной матрицы принимаемых сигналов Rxx, составлении для всех компонент zim этой матрицы уравнений вида ς μ = z m i = η → μ T ξ → , где µ=(m-1)N+1, m - номер строки, i - номер столбца, η → μ = [ w m 1 w i 1 * w m 1 w i 2 * … w m 1 w i K * w m 2 w i 1 * w m 2 w i 2 * … w m K w i K * ] T , N - число элементов AP, K - число элементов разрешения, ξ → = [ ξ 1     ξ 2 … ξ K 2 ] T - вектор, компонентами которого являются компоненты корреляционной матрицы излучений элементов разрешения, формировании из составленных уравнений векторно-матричного уравнения измерений, определении из него оценки вектора ξ → , формировании из компонент оценки вектора ξ → оценки корреляционной матрицы излучений элементов разрешения, определении по диагональным компонентам полученной матрицы мощностей и местоположений источников излучения. 1 ил.

Изобретение относится к средствам выявления и устранения технических каналов утечки конфиденциальной информации. Способ динамического обнаружения малогабаритных электронных устройств, несанкционированно установленных на подвижном объекте, заключающийся в том, что формируют базу данных о спектрах известных санкционировано установленных на объекте электронных устройств, принимают электромагнитные сигналы в заданном диапазоне частот на одно радиоприемное устройство, усиливают их, выделяют спектральные составляющие принятых сигналов, сравнивают выделенные спектры с ранее сформированными спектрами в базе данных санкционировано установленных на объекте электронных устройств, используемых на объекте контроля, принимают решение о наличии специальных электронных устройств. При этом задают расстояние, за пределами которого исключен прием сигналов, задают количество вспомогательных средств для обнаружения электромагнитных сигналов других электронных устройств, устанавливают основное средство обнаружения несанкционированно установленных электронных устройств, перемещают объект, измеряют расстояние между вспомогательным средством обнаружения и подвижным объектом, сравнивают измеренное расстояние с заданным. Образуют канал дистанционного управления и синхронизации между основным и вспомогательным средством обнаружения, измеряют одновременно электромагнитные сигналы основным и вспомогательным средствами обнаружения, передают сигналы, принятые вспомогательным средством обнаружения, на основное средство обнаружения по образованному каналу дистанционного управления и синхронизации. Технический результат заключается в повышении достоверности обнаружения несанкционированно установленных устройств и расширении области применения. 4 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, в частности для определения характеристик электромагнитного излучения исследуемого объекта. Устройство (10) для определения характеристик электромагнитного излучения исследуемого объекта, содержащее сеть (100) зондов, приводные средства (200), обеспечивающие скользящее перемещение сети (100) зондов вдоль своего контура с перемещением относительно исследуемого объекта на расстояние, превышающее шаг сети (100) зондов, для осуществления измерений в различных положениях сети (100) зондов относительно исследуемого объекта. Способ определения характеристик электромагнитного излучения исследуемого объекта с использованием устройства (10), содержащего приводные средства (200), обеспечивающие скользящее перемещение сети (100) зондов, включающий позиционирование, ориентирование и настройку положения сети (100) зондов относительно исследуемого объекта (400) и последующее проведение, посредством сети (100) зондов, серии измерений, соответствующих различным положениям сети (100) зондов относительного исследуемого объекта. Причем способ включает операцию скользящего перемещения сети (100) зондов вдоль своего контура относительно исследуемого объекта на расстояние, превышающее шаг сети (100) зондов. Технический результат заключается в возможности измерения излучения от объектов больших размеров на более высоких частотах и с меньшим количеством зондов. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к средствам относительного позиционирования сети электромагнитных датчиков и тестируемого объекта. Средство (300) относительного позиционирования сети (100) электромагнитных датчиков и тестируемого объекта (200), характеризующееся тем, что содержит средства (301) относительного перемещения тестируемого объекта (200) и сети (100) электромагнитных датчиков с по меньшей мере двумя степенями свободы, при этом указанные средства (301) включают в себя средства (301) перемещения со скольжением, выполненные с возможностью перемещения либо объекта (200), либо сети (100) датчиков, причем указанные средства (301) перемещения со скольжением содержат первый направляющий узел, расположенный в первом направлении скольжения, на котором установлена первая перемещаемая площадка (314), и второй направляющий узел, расположенный во втором направлении скольжения, перпендикулярном к первому направлению, на котором установлена вторая перемещаемая площадка (334), причем это относительное перемещение позволяет увеличить число точек измерения по этим двум степеням свободы, чтобы осуществить дополнительную пространственную дискретизацию при помощи сети (100) датчиков во время измерения излучаемого поля вокруг или перед объектом (200). Технический результат заключается в увеличении числа дискретных точек измерения. 2 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам. Радиометр с трехопорной модуляцией содержит последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией. Также устройство содержит «горячую» и «холодную» эталонные согласованные нагрузки и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент. В устройство введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты. Направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу. Технический результат - повышение точности измерений. 3 ил.
Наверх