Сканирующее устройство кругового обзора


 


Владельцы патента RU 2470325:

Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО") (RU)

Изобретение относится к оптико-механическим системам обзора и может быть использовано в технике активной и пассивной локации пространства. Устройство содержит неподвижный корпус, в котором установлены первый и второй подвижные блоки, образующие концентрическую конструкцию с общей осью вращения относительно неподвижного корпуса, оптический сканирующий узел, установленный на оси подвижной опоры, жестко связанной с первым подвижным блоком и кинематически связанной со вторым подвижным блоком. Каждый из подвижных блоков снабжен приводом с электродвигателем и датчиком положения, оптопары которых установлены на неподвижном корпусе. Статоры электродвигателей расположены на неподвижном корпусе, полые роторы электродвигателей первого и второго приводов, кодовые диски датчиков положения установлены на первом и втором подвижных блоках соответственно. Технический результат - повышение быстродействия, точности позиционирования и слежения. 1 ил.

 

Изобретение относится к оптико-механическим системам обзора и может быть использовано в технике активной и пассивной локации пространства.

Известно сканирующее устройство кругового обзора, разработанное по схеме, использованной при создании автоматического секстанта астроориентатора БЦ-63 ("Авиационные системы информации оптического диапазона". Справочник. М.: "Машиностроение", 1985 г., стр.76-79), в котором для обзора пространства используются два зеркала. Конструкция его состоит из неподвижного корпуса и подвижного блока. На подвижном блоке установлен оптический узел, состоящий из двух зеркал, первое из которых имеет неизменное положение относительно подвижного блока, а ось вращения второго зеркала закреплена в подвижной опоре, установленной в подвижном блоке. Второе зеркало может поворачиваться вокруг оси подвижной опоры. Вращение этого зеркала обеспечивается приводом, установленным на подвижном блоке, связанным с осью вращения зеркала через редукторную связь и состоящим из датчика положения и двигателя. Питание двигателя и датчика, передача информации о положении второго зеркала, формируемая датчиком положения, осуществляется через систему скользящих контактов. Вращение подвижного блока относительно неподвижного корпуса обеспечивается приводом через редукторную связь. Привод содержит двигатель и датчик положения, установленные на неподвижном корпусе.

Недостатком этого сканирующего устройства кругового обзора являются излишняя масса и моменты инерции подвижного блока, снижающие быстродействие, а также наличие скользящих контактов, снижающих надежность.

Наиболее близким к предлагаемому изобретению является "Сканирующее устройство кругового обзора" (патент РФ 2271553, G01S 17/66, опубл. 10.03.06 г., Бюл. №7), содержащее неподвижный корпус, в котором установлены первый и второй подвижные блоки, образующие концентрическую конструкцию с общей осью вращения относительно неподвижного корпуса, оптический сканирующий узел, установленный на подвижной опоре, жестко связанной с первым подвижным блоком, и кинематически связанный со вторым подвижным блоком, каждый из подвижных блоков снабжен приводом с электродвигателем и датчиком положения, оптопары которых установлены на неподвижном корпусе.

Недостатком этого сканирующего устройства является снижение точности позиционирования за счет зазоров в зубчатых зацеплениях, кинематической погрешности изготовления и установки зубчатых колес. Наличие этих погрешностей увеличивает колебание подвижных блоков при остановках, реверсе и в режиме слежения за движущимися источниками излучения, что увеличивает время переходных процессов и снижает точность позиционирования подвижных блоков, при этом увеличивается потребляемая мощность.

Технический результат изобретения заключается в повышении быстродействия, точности позиционирования и слежения за счет установки роторов электродвигателей и кодовых дисков датчиков непосредственно на подвижные корпуса, исключая тем самым применение зубчатых зацеплений, что позволит значительно уменьшить габариты и массу сканирующего устройства, улучшить динамические характеристики и обеспечить плавное вращение подвижных элементов.

Технический результат достигается тем, что в сканирующем устройстве кругового обзора, содержащем неподвижный корпус, в котором установлены первый и второй подвижные блоки, образующие концентрическую конструкцию с общей осью вращения относительно неподвижного корпуса, оптический сканирующий узел, установленный на подвижной опоре, жестко связанной с первым подвижным блоком и кинематически связанной со вторым подвижным блоком, каждый из подвижных блоков снабжен приводом с электродвигателем и датчиком положения, оптопары которых установлены на неподвижном корпусе, статоры электродвигателей расположены на неподвижном корпусе, полые роторы электродвигателей первого и второго приводов, кодовые диски датчиков положения установлены на первом и втором подвижных блоках соответственно.

На чертеже представлено сканирующее устройство кругового обзора.

Сканирующее устройство кругового обзора содержит неподвижный корпус 1, в котором установлены первый подвижный блок 2 и второй подвижный блок 3, образующие концентрическую конструкцию с общей осью вращения относительно неподвижного корпуса 1. Оптический сканирующий узел 4 установлен на оси 6 подвижной опоры 5, жестко связанной с первым подвижным блоком 2. Ось 6 подвижной опоры 5 вращается перпендикулярно оси вращения подвижных блоков 2 и 3. Подвижная опора 5 жестко связана с первым подвижным блоком 2 и кинематически, через коническую шестерню 7, со вторым подвижным блоком 3. Подвижные блоки 2 и 3 снабжены приводами с электродвигателями и датчиками положения 8 и 9, оптопары которых установлены на неподвижном корпусе 1. На неподвижном корпусе 1 расположены статоры 10 и 11 электродвигателей приводов. На первом подвижном блоке 2 установлены полый ротор 12 первого электродвигателя, кодовый диск первого датчика положения 8 (азимутального). На втором подвижном блоке 3 установлены полый ротор 13 второго электродвигателя, кодовый диск второго датчика положения 9 (угломестного).

Сканирующее устройство кругового обзора работает следующим образом. Второй подвижный блок 3, установленный в неподвижном корпусе 1, при подаче напряжения на статор 11 второго электродвигателя начинает вращаться вместе с полым ротором 13 второго электродвигателя. Через кинематическую связь между зубчатым венцом второго подвижного блока 3 и конической шестерней 7 вращение передается оптическому сканирующему узлу 4, а датчик положения 9 будет выдавать координаты положения сканирующего узла 4 по углу места. Для исключения одновременного вращения по азимуту первого подвижного блока 2 подается кодированное напряжение на статор 10 первого электродвигателя, которое фиксирует первый подвижный блок 2 от проворота.

Подача одинакового напряжения на статоры 10 и 11 электродвигателей приведет во вращение полые роторы 12 и 13 электродвигателей, а значит и подвижные блоки 2 и 3 с одинаковой угловой скоростью, следовательно, сканирующий узел 4 будет вращаться только по азимуту, а датчик положения 8 будет выдавать соответствующие координаты по азимуту.

При подаче разных значений напряжения на статоры 10 и 11 электродвигателей первый подвижный блок 2 и второй подвижный блок 3 будут вращаться с разными скоростями, следовательно, подвижная опора 5 и сканирующий узел 4 будут вращаться по азимуту со скоростью первого подвижного блока 2. По углу места, через узел преобразования разности скоростей вращения, ось подвижной опоры 6, сканирующий узел 4 будут вращаться со скоростью, равной разности скоростей вращения первого подвижного блока 2 и второго подвижного блока 3.

Таким образом, подавая заранее выбранные комбинации напряжений на статоры электродвигателей, можно управлять движением сканирующего элемента по любому закону, обнаруживать источники излучения и слежение за ними в пределах всего полусферического пространства. При этом повышается быстродействие, точность позиционирования и слежения, снижается потребляемая мощность.

Сканирующее устройство кругового обзора, содержащее неподвижный корпус, в котором установлены первый и второй подвижные блоки, образующие концентрическую конструкцию с общей осью вращения относительно неподвижного корпуса, оптический сканирующий узел, установленный на оси подвижной опоры, жестко связанной с первым подвижным блоком и кинематически связанной со вторым подвижным блоком, каждый из подвижных блоков снабжен приводом с электродвигателем и датчиком положения, оптопары которых установлены на неподвижном корпусе, отличающееся тем, что статоры электродвигателей расположены на неподвижном корпусе, полые роторы электродвигателей первого и второго приводов, кодовые диски датчиков положения установлены на первом и втором подвижных блоках соответственно.



 

Похожие патенты:

Изобретение относится к радиоэлектронным устройствам и представляет собой пассивную комбинированную систему скрытого круглосуточного наблюдения за наземной и/или надводной обстановкой на дальности до 20 км в пределах прямой видимости, в том числе обнаружения и распознавания объектов наблюдения с удаленного рабочего места оператора.

Изобретение относится к обнаружению объектов. .

Изобретение относится к устройствам селекции объектов на неоднородном удаленном фоне. .

Изобретение относится к автоматическому регулированию, предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением.

Изобретение относится к области систем слежения за подвижными объектами, в том числе с качающегося основания, а также может быть использовано для управления воздушным движением.

Изобретение относится к оптико-электронным устройствам, предназначенным для обнаружения источников оптического излучения и диагностирования оптических характеристик этих источников.

Изобретение относится к области систем наведения и автоматического сопровождения объектов в пространстве, преимущественно с подвижного основания. .

Изобретение относится к области неразрушающего контроля нефтегазопроводов и может быть использовано для целей бесконтактного оптического определения пройденного расстояния на борту внутритрубного снаряда-дефектоскопа.

Изобретение относится к оптико-механическим системам обзора и может быть использовано в технике активной и пассивной локации пространства. .

Изобретение относится к фотоследящим устройствам и может быть использовано в системах обнаружения, слежения и управления за воздушным движением. Устройство включает приемники сигналов, которые установлены на правом и левом карданных подвесах и содержат защищенные тубусами фотоэлементы, установленные в защитном корпусе с увиолевым стеклом. Датчики токов, установленные в электрической цепи фотоэлементов, связаны многоканальными кабелями с программно-логическими комплексами, которые кабелями связаны с системным блоком компьютера и телевизионной системой монитора компьютера. Правый и левый карданные подвесы приемников сигналов соединены интегрированными шаговыми сервоприводами с системным блоком компьютера. Технический результат заключается в уменьшении времени поиска воздушного объекта за счет замены обработки информации спектра радиоволн видимого диапазона на спектр радиоволн ультрафиолетового диапазона, независимость определения объекта от помех. 4 ил.

Изобретение может быть использовано в ретрорефлекторных системах (PC) космических аппаратов. Кольцевая ретрорефлекторная система состоит из уголковых отражателей с пирамидальной вершиной и основанием, на боковых гранях которых имеется отражающее покрытие. В каждом уголковом отражателе один из трех двугранных углов при вершине выполнен с заданным отступлением от 90°. Вершины уголковых отражателей расположены равномерно по окружности так, что основания уголковых отражателей расположены в одной плоскости. Каждый уголковый отражатель развернут таким образом, чтобы проекция ребра двугранного угла уголкового отражателя, выполненного с заданным отступлением от 90°, на плоскость составляла с касательной к окружности одинаковые углы для всех уголковых отражателей. Проекции диаметрально противоположных ребер двугранных углов уголковых отражателей, выполненных с заданным отступлением от 90°, параллельны. Технический результат - повышение точности измерения расстояния до центра РС и возможность ее использования в одноосно ориентированных спутниках, например, ГЛОНАСС. 3 ил.

Изобретение относится к области оптико-электронных устройств слежения, преимущественно к наземному комплексу для обнаружения и распознавания объектов. Наземный транспортный комплекс для обнаружения и распознавания объектов включает наземное транспортное средство, систему электропитания и оптико-электронную систему. Оптико-электронная система содержит видеокамеру и тепловизор и установлена на опорно-поворотном устройстве, закрепленном на подъемно-мачтовом приспособлении и выполненном с возможностью вращения на 360 градусов в азимутальной плоскости, а также с возможностью перемещения по углу места. Опорно-поворотное устройство выполнено с возможностью вращения в азимутальной плоскости со скоростью до 120 градусов в секунду и перемещения по углу места на ±60 градусов со скоростью до 100 градусов в секунду. Оптико-электронная система выполнена с возможностью одновременного вывода изображения с камеры и тепловизора на два монитора. Программное обеспечение комплекса выполнено с возможностью его функционирования под управлением операционной системы Ubuntu Linux. Достигается повышение скорости обнаружения и распознавания объектов. 5 з.п. ф-лы, 7 ил.
Способ относится к оптическим стереоскопическим способам определения местонахождения объекта в окружающем пространстве. При реализации способа принимают и регистрируют опорное и сравниваемое изображения двумя идентичными оптическими системами. Формируют разностные изображения путём вычитания сравниваемого изображение из опорного и опорного из сравниваемого. Обнуляют отрицательные значения в разностных изображениях. И определяют расстояние до объекта на основании сдвига между ненулевыми фрагментами разностных изображений. Причём расстояние между точками регистрации каждой пары опорного и сравниваемого изображений последовательно уменьшают при приближении объектов к оптической системе. Технический результат заключается в согласовании базисного расстояния регистрации кадров стереопары в процессе перемещения оптических систем в пространстве. 3 з.п. ф-лы, 8 ил.

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий микроконтроллер, оптический солнечный датчик, фотоприемники которого выполнены в виде каскадных фотопреобразователей, датчик оборотов первого электродвигателя, датчик оборотов второго электродвигателя. Система обеспечивает сопровождение солнечного диска с необходимой точностью независимо от погодных условий и сводит к минимуму собственное потребление энергии за счет исключения срабатывания оптического солнечного датчика при его засветке от светлых пятен в облаках. 2 ил.
Способ автоматического обнаружения целей может быть использован при модернизации и разработке образцов военной техники сухопутных войск. Достигаемый результат - обеспечение реализации одновременного выполнения функций автоматического обнаружения и государственного опознавания целей, что в итоге сокращает время решения огневой задачи, исключение ситуаций случайного обстрела и поражения своих сил и средств. Сущность изобретения состоит в том, что в способе автоматического обнаружения целей с использованием лазерного локатора, заключающемся в наведении оператором с помощью своего оптико-электронного прицела лазерного локатора на предполагаемую цель, формировании им зондирующего импульса, приеме и обработке приемным устройством отраженного лазерного излучения от оптико-электронного прибора цели и выдаче сигнала о наличии или отсутствии цели, при этом зондирующий импульс содержит кодированную информацию запросчика системы государственного опознавания цели, приемное устройство системы государственного опознавания, установленное на цели, принадлежащей к своим войскам, принимает и обрабатывает полученный кодированный зондирующий импульс и передает ответный кодированный радиосигнал, подтверждающий принадлежность цели к своим войскам. Запросчик системы государственного опознавания принимает кодированный радиосигнал и информирует оператора о принадлежности цели к своим войскам, а при отсутствии от цели подтверждающего кодированного радиосигнала информирует оператора о принадлежности цели к противнику.
Наверх