Нейтронный датчик


 


Владельцы патента RU 2470329:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (RU)

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный датчик содержит источник заряженных частиц, возникающих под действием нейтронного излучения, и упругий элемент, при этом источник заряженных частиц выполнен из стабильного не радиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, на источнике заряженных частиц и на поглотителе заряженных частиц установлены лепестки оптической диафрагмы, связанной с оптической системой ввода и вывода светового луча. Технический результат - исключение делящегося вещества, повышение помехозащищенности, повышение достоверности измерений и надежности детектора нейтронов, снятие ограничений на измеряемые потоки и флюенсы, обеспечение измерения временной зависимости потока в случае импульсных нейтронных источников, обеспечение неэлектрическими средствами требуемого порога срабатывания при запуске регистрирующей аппаратуры, обеспечение многократности использования, упрощение технической реализации. 1 ил.

 

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников нейтронов, в научных исследованиях.

Известен детектор нейтронов, который содержит резистивный элемент в виде таблетки из делящегося материала с низкой теплопроводностью и большим удельным электросопротивлением. Под действием излучения элемент нагревается и изменяется его электросопротивление, которое измеряется. Патент Российской Федерации №1526403, МПК: G01T 3/00, 1997 г. Недостатками аналога являются: использование радиоактивных материалов, низкий уровень генерируемого электрического сигнала, низкая помехозащищенность к электромагнитным наводкам, отсутствие возможности обеспечения неэлектрическими средствами требуемого порога срабатывания по флюенсу нейтронов.

Известен детектор нейтронов, включающий корпус, заполненный люминесцирующей газовой средой и делящимся материалом, и фотоприемник. В одном из торцов корпуса размещен волоконный световод, соединенный с регистрирующей системой посредством фотоприемника с фильтром, при этом делящийся материал выполнен в виде слоя и нанесен на боковую поверхность корпуса. Полезная модель Российской Федерации №30008, МПК: G01T 1/16, 2003 г. Недостатками аналога являются: использование радиоактивных материалов; низкая эффективность регистрации из-за относительно малого сечения реакции деления; отсутствие возможности обеспечения неэлектрическими средствами требуемого порога срабатывания по флюенсу нейтронов; энергозависимость.

Известен детектор нейтронов, содержащий чувствительный элемент из материала, в состав которого входит делящийся под действием нейтронов материал, и энергонезависимый преобразователь энергии с электрическим выходом, в котором чувствительный элемент выполнен из материала с эффектом памяти формы, энергонезависимый преобразователь включает два одинаковых пьезоэлектрических генератора, включенных электрически параллельно встречно, при этом чувствительный элемент установлен с возможностью взаимодействия с указанными генераторами в процессе формовосстановления при превышении потоком нейтронов критического уровня через дополнительно введенный упругий элемент, механически связанный с чувствительным элементом и размещенный с зазорами между пьезоэлектрическими генераторами. Патент Российской Федерации №2332689, МПК: G01T 3/00, 2008 г. Прототип.

Недостатками прототипа являются: использование делящегося вещества; низкая эффективность регистрации из-за относительно малого сечения реакции деления; невозможность многократного использования и изменения порога срабатывания без замены чувствительного элемента и пористого держателя; ограниченное быстродействие; невозможность измерения временной зависимости потока в случае импульсных нейтронных источников; сложность изготовления и большое количество конструктивных элементов.

Задачами изобретения являются: исключение из конструкции делящегося вещества; создание энергонезависимого нейтронного датчика, менее чувствительного к фоновым излучениям и электромагнитным наводкам; обеспечение неэлектрическими средствами требуемого порога срабатывания; измерение временной зависимости потока в случае импульсных нейтронных источников; снятие ограничений на измеряемые потоки и флюенсы.

Техническим результатом является: исключение делящегося вещества; снятие ограничений на измеряемые потоки и флюенсы; повышение помехозащищенности, достоверности измерений и надежности детектора нейтронов; обеспечение измерения временной зависимости потока в случае импульсных нейтронных источников; обеспечение оптическими средствами требуемого порога срабатывания при запуске регистрирующей аппаратуры; обеспечение многократности использования; упрощение технической реализации.

Технический результат достигается тем, что в нейтронном датчике, содержащем источник заряженных частиц, возникающих под действием нейтронного излучения, и упругий элемент, источник заряженных частиц выполнен из стабильного не радиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, на источнике заряженных частиц и/или на поглотителе заряженных частиц установлены лепестки оптической диафрагмы, связанной с оптической системой ввода и вывода светового излучения.

Сущность изобретения поясняется на чертеже, схематично изображающем устройство датчика с упругим элементом в виде цилиндрической пружины, где 1 - корпус датчика, 2 - упругий элемент, 3 - поглотитель заряженных частиц, 4 - источник заряженных частиц, возникающих под действием нейтронного излучения, 5 - оптическая диафрагма, 6 - волоконный световод для ввода и вывода светового луча.

Нейтронный датчик работает следующим образом. Нейтроны, попадающие в материал источника заряженных частиц 4, вызывают ядерную реакцию и излучение заряженных частиц, часть из которых выходит и в сторону поглотителя заряженных частиц 3. Источник заряженных частиц 4 и поглотитель заряженных частиц 3 набирают заряд противоположных знаков. Между ними возникает сила электрического притяжения, которая растет по мере увеличения заряда. Источник заряженных частиц 4 и поглотитель заряженных частиц 3 растягивают упругий элемент 2 и приближаются друг к другу.

Изменение взаимного положения источника заряженных частиц 4 и поглотителя заряженных частиц 3 при облучении нейтронами регистрируют с помощью оптической диафрагмы 5, противоположные лепестки которой механически связаны, соответственно, с источником заряженных частиц 4 и поглотителем заряженных частиц 3. Уменьшение расстояния между источником заряженных частиц 4 и поглотителем заряженных частиц 3 приводит к уменьшению зазора диафрагмы 5 и интенсивности проходящего через нее светового пучка обратно пропорционально размеру зазора. Изменение интенсивности прошедшего через диафрагму 5 светового луча фиксируют с помощью фотоприемника, например фотодиода (не показан). Ввод первичного светового луча и вывод отраженного светового луча производят волоконным световодом 6.

При использовании оптической диафрагмы 5 с отражающим покрытием и импульсного источника света изменение взаимного положения источника заряженных частиц 4 и поглотителя заряженных частиц 3 регистрируют по интенсивности отраженного луча, который по волоконному световоду 6 и внешнему оптическому разветвителю отводят на фотоприемник.

Оптическая диафрагма 5 может быть изготовлена отражающей. Она работает как на отражение света, так и на его пропускание.

Это варианты реализации условия изменения интенсивности светового луча при сближении источника заряженных частиц 4 и поглотителя заряженных частиц 3. В первом случае - отраженного светового луча, во втором - прошедшего.

В первом случае достаточно одного волоконного световода 6, но источник света должен быть импульсным и необходим оптический разветвитель луча света.

Во втором случае использованы два оптических волокна (вход и выход), а луч света - стационарный и не нужен разветвитель.

Восстановление исходного состояния датчика происходит за счет компенсации электрических зарядов источника 4 и поглотителя 3 при их соприкосновении при накоплении достаточного для этого заряда или в результате электрического разряда, возникающего между источником 4 и поглотителем 3 при превышении разности потенциалов между ними выше значения напряжения пробоя. Для этого источник и/или поглотитель может быть снабжен заостренным электродом (не показан).

Нейтронный датчик размещен в вакуумируемом корпусе 1. Корпус 1 откачивают до давления не более нескольких десятков миллиметров ртутного столба. Откачивание воздуха из корпуса 1 датчика является необходимым условием его работоспособности. При наличии молекул воздуха между поглотителем 3 и источником 4 сила электрического поля между ними компенсируется полем, обусловленным поляризацией молекул воздуха.

Чувствительность нейтронного датчика зависит от материала, толщины и площади слоя источника заряженных частиц 4, площади поглотителя заряженных частиц 3, степени жесткости упругого элемента 2.

Материал источника заряженных частиц 4 определяет количество единичных зарядов, выходящих из источника в сторону поглотителя заряженных частиц 3. Расчеты показывают, что для датчика быстрых нейтронов лучшими материалами для источника заряженных частиц 4 с точки зрения максимального выхода заряда на единичный нейтрон являются изотопы В11 и Са40.

Поскольку поток быстрых нейтронов практически не меняется по глубине слоя источника заряженных частиц 4, чувствительность датчика быстрых нейтронов увеличивается при увеличении толщины слоя источника до толщины примерно 100 мкм в случае В11 и 1500 мкм в случае Са40 и далее остается постоянной.

В таблице приведены максимальные выходы единичного заряда из этих материалов на один попавший в них быстрый нейтрон, рассчитанные для различных энергий нейтрона. Из таблицы видно, что эффективность датчика с источником из В11 слабо зависит от энергии быстрого нейтрона в диапазоне энергий 1-14,5 МэВ. Эффективность датчика с источником из Са40 растет с увеличением энергии нейтрона и более чем на порядок превышает эффективность датчика с В11 при энергии нейтрона 14,5 МэВ. Из таблицы следует, что для нейтронов спектра деления (средняя энергия около 2 МэВ) более эффективным является датчик с источником заряженных частиц из В11.

Таблица
Энергия нейтрона, МэВ Изотоп
В11 Са40
1 3.2Е-5 8.3Е-7
1,5 6.6Е-5 1.2Е-6
2,5 8.7Е-5 1.2Е-5
4 6.4Е-5 2.4Е-5
6 8.5Е-5 1.6Е-4
10 8.5Е-5 3.8Е-4
14,5 1.7Е-4 4.1Е-4

В случае датчика тепловых нейтронов материалом источника являются гадолиний и его изотопы Gd155 и Gd157, обладающие среди всех существующих элементов максимальным макроскопическим сечением поглощения нейтронов. При использовании гадолиния плотность потока тепловых нейтронов резко падает по мере удаления от поверхности слоя источника вглубь слоя. По этой причине существует толщина слоя источника, при которой выход заряженных частиц максимален. В случае естественного гадолиния эта толщина составляет примерно 10-12 мкм. Доля электронов, выходящих из этого слоя гадолиния при изотропном распределении потока нейтронов, составляет около 10% от числа упавших на него тепловых нейтронов. Вторым по количеству выходящих зарядов является кадмий и его изотоп Cd113.

Сечение взаимодействия с тепловыми нейтронами для бора В11 и Са40, приводящего к рождению заряженных частиц, пренебрежимо мало по сравнению с сечением взаимодействия с быстрыми нейтронами. Это обеспечивает низкую чувствительность датчика быстрых нейтронов к фоновому излучению тепловых нейтронов. Чувствительность к фоновому гамма излучению также крайне низка из-за малой вероятности ядерных реакций под действием гамма излучения с рождением заряженных частиц.

Сечение взаимодействия гадолиния и его изотопов Gd155 и Gd157, a также кадмия и его изотопа Cd113 с быстрыми нейтронами и гамма излучением пренебрежимо мало по сравнению с сечением для тепловых нейтронов. Датчик с источником заряженных частиц из этих элементов является датчиком тепловых нейтронов и практически нечувствителен к быстрым нейтронам и гамма-излучению.

Датчик и быстрых, и тепловых нейтронов нечувствителен к электромагнитным наводкам, так как использует оптический канал измерения.

Поглотитель заряженных частиц 3 выполнен из материала с хорошей электропроводностью, обладающего минимальным коэффициентом отражения (альбедо) для падающих на него заряженных частиц. Одним из таких материалов является, например, графит.

Упругий элемент выполнен в виде витой цилиндрической пружины, или спиральной пружины, или торсионной пружины, или мембранной пружины.

Нейтронный датчик, содержащий источник заряженных частиц, возникающих под действием нейтронного излучения, и упругий элемент, отличающийся тем, что источник заряженных частиц выполнен из стабильного нерадиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, на источнике заряженных частиц и на поглотителе заряженных частиц установлены лепестки оптической диафрагмы, связанной с оптической системой ввода и вывода светового луча.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к сцинтилляционным детекторам для регистрации ионизирующих излучений, обнаружения источников излучений, определения направления на них и их идентификации, для измерения спектра быстрых нейтронов.

Изобретение относится к области регистрации и спектрометрии быстрых нейтронов и может быть использовано в области физики реакторов и экспериментальной нейтронной физике.

Годоскоп // 2416112
Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения радиоактивных материалов и источников. .

Изобретение относится к детекторам элементарных частиц и может быть применено для регистрации нейтронов в физических экспериментах, а также в атомной энергетики (в зонах АЭС, в которых имеется интенсивное гамма-излучение).

Изобретение относится к детектору нейтронов для детектирования нейтронов в областях с существенным - или -излучением, содержащему чувствительный к нейтронам кристалл-сцинтиллятор (10), обеспечивающий сигнал захвата нейтрона, который сильнее сигнала захвата -излучения, с энергией 3 МэВ, полупроводниковый фотодетектор, оптически соединенный с кристаллом-сцинтиллятором, причем кристалл-сцинтиллятор и полупроводниковый фотодетектор (20) выбирают таким образом, чтобы время сбора полного заряда для сигналов сцинтиллятора в полупроводниковом фотодетекторе превышало время сбора полного заряда для сигналов, генерируемых непосредственно детектированием ионизирующего излучения в полупроводниковом фотодетекторе, детектор нейтронов также содержит устройство сэмплирования сигналов детектора, устройство (35) обработки цифровых сигналов, средство, которое отличает сигналы непосредственно из полупроводникового фотодетектора, индуцированные - или -излучением и по меньшей мере частично поглощаемые полупроводниковым фотодетектором, от сигналов света, поступающих в полупроводниковый фотодетектор, испускаемые кристаллом-сцинтиллятором после захвата по меньшей мере одного нейтрона, путем разделения по форме импульса, используя различие между временем сбора полного заряда для сигналов сцинтиллятора от времени сбора полного заряда для сигналов, генерируемых прямым детектированием ионизирующего излучения в полупроводниковом фотодетекторе, и средство, которое отличает индуцированные нейтронами сигналы от индуцированных -излучением сигналов в кристалле-сцинтилляторе путем разделения разных сигналов по высоте их импульса, используя различие между количеством фотонов, сгенерированных нейтроном и -излучением, в интересующей области.

Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте

Изобретение относится к устройству измерения скорости счета камеры деления и устройству калибровки соответствующей камеры деления

Изобретение относится к области ядерной техники, в частности к калибровке эмиссионных детекторов нейтронов для внутризонного контроля распределения энерговыделения в ядерных реакторах

Изобретение относится к углеводородной промышленности, более конкретно данное изобретение касается инструментов нейтронного каротажа, используемых при исследовании геологической формации

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий. Сцинтиллятор для детектирования нейтронов содержит кристалл фторида металла из ряда, включающего LiCaAlF6, LiSrAlF6, LiYF4, служащий в качестве матрицы, в котором содержание атомов 6Li в единице объема (атом/нм3) от 1,1 до 20. Кристалл имеет эффективный атомный номер от 10 до 40 и содержит, по меньшей мере, один вид лантаноида, выбранного из группы, состоящей из церия, празеодима и европия. Нейтронный детектор содержит указанный сцинтиллятор и фотодетектор. Для получения кристалла фторида металла расплавляют смесь, составленную из фторида лития, фторида указанного металла, имеющего валентность 2 или выше, и фторида лантаноида, и выращивают монокристалл из расплава. Сцинтиллятор по изобретению имеет высокую чувствительность к нейтронному излучению и пониженный фоновый шум, связанный с γ-лучами. 3 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для определения плотности потока быстрых нейтронов при работе ядерно-физических установок. Сущность изобретения заключается в том, что детектор мононаправленного нейтронного излучения состоит из корпуса, коллектора, выполненного в виде металлической пластины и диэлектрического слоя из водородсодержащего материала, при этом диэлектрический слой из водородсодержащего материала заключен в токопроводящую оболочку, коллектор в виде металлической пластины заключен в изолирующую оболочку, между этими оболочками размещен электростатический экран, линия связи от токопроводящей оболочки, охватывающей диэлектрический слой из водородсодержащего материала, подключена к инвертирующему каналу дифференциального усилителя, а линия связи от коллектора подключена к неинвертирующему каналу того же усилителя. Технический результат - устранение эффектов, связанных с накоплением отрицательного заряда в диэлектрике и возможным возникновением электрических пробоев, повышение чувствительности детектора к нейтронному излучению. 1 ил.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно тепловых нейтронов, содержащему гамма-лучевой сцинтиллятор, упомянутый сцинтиллятор содержит неорганический материал с длиной ослабления Lg менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-излучения для энергичных гамма-лучей в гамма-лучевом сцинтилляторе, причем гамма-лучевой сцинтиллятор дополнительно содержит компоненты, для которых умножение сечения захвата нейтрона на концентрацию дает длину поглощения Ln для тепловых нейтронов, которая больше 0,5 см, но меньше пятикратной длины ослабления Lg, предпочтительно, меньше двукратной длины ослабления Lg для гамма-лучей с энергией 5 МэВ в сцинтилляторе, причем нейтронпоглощающие компоненты гамма-лучевого сцинтиллятора высвобождают энергию, сообщенную возбужденным ядрам после захвата нейтрона, в основном посредством гамма-излучения, причем гамма-лучевой сцинтиллятор имеет диаметр или длину края по меньшей мере 50% Lg, предпочтительно, по меньшей мере Lg, для поглощения существенной части энергии гамма-лучей, выделяемой после захвата нейтрона в сцинтилляторе, устройство дополнительно содержит детектор света, оптически соединенный с гамма-лучевым сцинтиллятором для детектирования количества света в гамма-лучевом сцинтилляторе, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением в гамма-лучевом сцинтилляторе, причем оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная гамма-энергия Esum выше 2,614 МэВ. Технический результат - повышение точности детектирования нейтронов. 4 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно, тепловых нейтронов, содержащему по меньшей мере одну первую секцию (102) с высокой способностью к поглощению нейтронов и по меньшей мере одну вторую секцию (101) с низкой способностью к поглощению нейтронов, причем вторая секция содержит гамма-лучевой сцинтиллятор, материал гамма-лучевого сцинтиллятора содержит неорганический материал с длиной ослабления менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-лучей для энергичных гамма-лучей во второй секции, где материал первой секции выбран из группы материалов, высвобождающих энергию, сообщаемую первой секции за счет захвата нейтрона, в основном, посредством гамма-излучения, и где вторая секция окружает первую секцию таким образом, что существенный участок первой секции покрыт второй секцией, устройство дополнительно содержит детектор света (103) 1, оптически соединенный со второй секцией для детектирования количества света во второй секции, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем это приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением второй секции, где оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная энергия гамма-кванта E (sum) выше 2,614 МэВ. Технический результат - повышение точности детектирования нейтронов. 6 н. и 39 з.п. ф-лы, 6 ил.
Наверх