Способ повышения сопротивления усталости конструкционных металлических материалов



Способ повышения сопротивления усталости конструкционных металлических материалов
Способ повышения сопротивления усталости конструкционных металлических материалов
Способ повышения сопротивления усталости конструкционных металлических материалов
Способ повышения сопротивления усталости конструкционных металлических материалов

 


Владельцы патента RU 2471002:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли (RU)

Изобретение относится к области металлургии, а именно к разработке способов повышения характеристик усталостной долговечности конструкционных металлов на основе преобразования энергетической структуры материалов как на стадии производства сплавов и полуфабрикатов, так и в эксплуатации. Техническим результатом заявленного изобретения является повышение сопротивления усталости конструкционных металлических материалов. Для достижения технического результата в способе упрочняющей обработки пластин из конструкционных металлических материалов, включающем тренировку нагружением пластины путем внешнего механического воздействия на пластину с обеспечением циклического растяжения, осуществляют переменное механическое воздействие в диапазоне циклических дозирующих нагрузок сжатия от σ=(-3÷-10) кг/мм2 до σmax=(+1÷+4) кг/мм2 и сдвига до τ=(±3,0÷±5,0) кг/мм2. 2 табл., 4 ил.

 

Изобретение относится к области металлургии, а именно к разработке способов повышения характеристик усталостной долговечности конструктивных металлов на основе преобразования энергетической структуры материалов как на стадии производства сплавов и полуфабрикатов, так и в эксплуатации.

Известны способы повышения и стабилизации механических характеристик металлических полуфабрикатов посредством обтяжки растяжением вдоль проката до 2% (Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. Промышленные алюминиевые сплавы: Справочное изд. / 2 изд., перераб. и доп. - М.: Металлургия, 1984), повышения усталостной долговечности металлов и элементов конструкций с помощью создания в опасных сечениях, в зонах концентрации напряжений полей остаточных напряжений обратного эксплуатационным напряжениям знака (остаточных напряжений сжатия) методами локального упругого, упругопластического или пластического деформирования материала по контуру концентратора напряжений и постановки болтов и заклепок с гарантированным осевым и радиальным натягом (Белов В.К., Рудзей Г.Ф., Калюта А.А. Повышение усталостной долговечности заклепочных и сварных соединений авиационных конструкций технологическими методами: Монография. - Новосибирск, 2006).

Остаточные напряжения сжатия, суммируясь с действующими в конструкции эксплуатационными напряжениями от внешних воздействий, существенно снижают уровень максимальных напряжений цикла растяжения, что приводит к ощутимому приросту долговечности элемента конструкции за счет увеличения периода циклической наработки до момента появления трещины усталости.

Известные способы местного пластического деформирования (МПД) связаны с пластическим деформированием поверхностного слоя элемента конструкции, материала на контуре концентратора в плоскости детали или в поперечном направлении (Брондз Л.Д. Технология и обеспечение ресурса самолетов. - М.: Машиностроение, 1986). При этом эффект упрочнения ограничивался диапазоном возможных деформаций по физико-механическим параметрам или конструктивным соображениям.

Недостатком этих способов является невозможность восстановления релаксирующего во время эксплуатации или хранения изделия эффекта упрочнения без повторения операций упрочнения с разборкой соединений, узлов, агрегатов.

Наиболее близкими по технической сущности к предлагаемому способу являются способы повышения сопротивления усталости элементов конструкций с концентраторами напряжений за счет эпизодических или периодических периодов отдыха или умеренных перегрузок материала статическим растяжением (Форрест П. Дж. Усталость металлов. - М.: Машиностроение, 1968), тренировок циклическим растяжением (Иванова B.C., Терентьев В.Ф. Природа усталости металлов. - М.: Металлургия, 1975).

Недостатком данного способа является очень низкий эффект упрочнения (до 10…15% от исходной долговечности) в зоне концентратора напряжений - источника зарождения трещин усталости. Эффект на гладких образцах материалов - в пределах разброса экспериментальных результатов.

Техническим результатом заявленного изобретения является повышение сопротивления усталости конструкционных металлических материалов.

Для достижения технического результата в способе упрочняющей обработки пластин из конструкционных металлических материалов, включающем тренировку нагружением пластины путем внешнего механического воздействия на пластину с обеспечением циклического растяжения, осуществляют переменное механическое воздействие в диапазоне циклических дозирующих нагрузок сжатия от σ=(-3÷-10) кг/мм2 до σmax=(+1÷+4) кг/мм2 и сдвига до τ=(±3,0÷±5,0) кг/мм2.

Экспериментальная проверка влияния способа предварительной обработки сдвигом проведена на алюминиевом сплаве Д16АТ, лист толщиной δ=2,8 мм, временное сопротивление при растяжении σв=47,5 кг/мм2, модуль упругости первого рода Е=7,2·103 кг/мм2.

Для реализации программ предварительного нагружения металла сдвиговыми напряжениями разработано приспособление (фиг.1), обеспечивающее нагружение пластины в ее плоскости как балки с заделкой по концам, нагруженной посередине сосредоточенной силой.

Принципиальная схема нагружения показана на фиг.2.

Во избежание возникновения биений при высокочастотном нагружении в приспособлении на каждом уровне закреплялись по две пластины с внутренними прокладками достаточной толщины, что создавало жесткий контур в плане (фиг.1).

Эта методика позволила проводить нагружение пластин сдвиговыми напряжениями до уровня τ=±5 кг/мм2.

Для предварительного нагружения пластин на сжатие использовали, в основном, то же приспособление. Вместо конструкции из четырех поперечно расположенных пластин на те же носители жестко закрепляли две, разнесенные на расстояние ~35 мм, продольно расположенные пластины высотой ~120…130 мм.

Такое устройство позволило провести циклическое нагружение пластин напряжениями сжатия до уровня σсж=-10 кг/мм2 без потери устойчивости.

После проведения предварительной наработки пластин по указанным методикам из них изготавливали образцы для испытаний на статическую прочность и выносливость.

Предварительную наработку пластин проводили по пяти различным программам, представленным в таблице 1, из которых две программы - испытания на сдвиг, три программы - испытания па растяжение-сжатие.

В программах, содержащих несколько уровней напряжений, наработка произведена последовательно, начиная с нижних уровней напряжений, в итоге суммируясь по всем уровням.

Характеристики статической прочности после наработки по этим программам мало изменились: предел прочности σв остался таким же, как у исходного металла, модуль упругости Е увеличился на 7…8% после программ на сжатие.

Все напряжения программ лежат в упругой зоне металла.

Таблица 1
Программа предварительного нагружения пластин из Д16АТ, δ=2,8 мм

п/п
Программа предварительного циклического нагружения (тренировки) Режим предварительного циклического нагружения Условное обозначение программы
Максимальное минимальное; напряжение цикла, кг/мм2 Наработка, циклов
1 Одноступенчатый знакопеременный симметричный сдвиг τ=±3,0 80000 τ3
2 Трехступенчатый знакопеременный симметричный сдвиг τ=±3,0
τ=±4,0
τ=±5,0
40000
40000
40000
τ5
3 Трехступенчатое осевое сжатие -растяжение σ=+1,0; -3,0
σ=+2,0; -6,0
σ=+2,0; -9,0
40000
40000
40000
С9 (40)
4 Четырехступенчатое осевое сжатие - растяжение σ=+1,5; -3,0
σ=+2,5; -5,0
σ=+3,0; -8,0
σ=+4,0; -10,0
60000
60000
60000
60000
С10 (60)
5 Четырехступенчатое осевое сжатие -растяжение σ=+1,5; -3,0
σ=+2,5; -5,0
σ=+3,0; -8,0
σ=+4,0; -10,0
60000
80000
100000
120000
С10 (120)

Для оценки влияния программы предварительного нагружения последующие сравнительные испытания исходного материала на выносливость проведены на разных уровнях напряжений отнулевыми циклами растяжения в широком диапазоне значений максимального напряжения цикла σmах: от 15 кг/мм2 до 44 кг/мм2.

В таблице 2 приведены средние значения выносливости гладких образцов Ncp для разных уровней σmax и относительные значения Ncp/Nисх выносливости на этих уровнях σmax после предварительной наработки по пяти вышеуказанным программам.

На фиг.3 и 4 приведены графики, иллюстрирующие увеличение относительной выносливости Ncp/Nисх (σ) образцов после предварительной наработки по этим пяти программам.

Таблица 2
Сводная таблица результатов испытаний образцов (гладких) после предварительной наработки по пяти различным программам
№п/п Условное обозначение программы σmах=15 кг/мм2, Nисх=1613,2 т.ц. σmах=20 кг/мм2, Nисх=426,9 т.ц. σmах=30 кг/мм2, Nисх=84,3 т.ц. σmах=40 кг/мм2, Nисх=23,7 т.ц.
Ncp Ncp/Nисх Ncp Ncp/Nисх Ncp Ncp/Nисх Ncp Ncp/Nисх
1 τ3 3982,67 2,47 - 1,0 - - - -
2 τ5 >8101,8 >5 899,00 2,100 133,86 1,588 - -
3 С9 (40) - - 864,76 2,025 113,35 1,344 - -
4 С 10 (60) >10023,8 >6,2 1317,00 3,085 141,00 1,670 - -
5 С10 (120) - - 1720,87 4,030 194,12 2,300 30,420 1,283

Здесь

Nисх, тысяч циклов - исходная долговечность гладкого образца при отнулевом циклическом растяжении с максимальным напряжением цикла σmах;

Ncp, тысяч циклов - долговечность гладкого образца при отнулевом циклическом растяжении с максимальным напряжением цикла σmах после предварительной циклической наработки по соответствующей программе.

Полученные результаты показывают:

- принятые методики позволяют значительно повысить выносливость исходного конструкционного металла в широком диапазоне эксплуатационных напряжений;

- увеличение параметров программ предварительной наработки (τ, σ, N, ступеней их дискретности) дает существенное увеличение выносливости;

- после программ предварительной наработки τ5, С10 (60), С10 (120) предел выносливости исследованного конструкционного металла (Д16АТ) увеличился до 15 кг/мм2.

Способ упрочняющей обработки пластин из конструкционных металлических материалов, включающий тренировку нагружением путем внешнего механического воздействия на пластину с обеспечением циклического растяжения, отличающийся тем, что осуществляют переменное механическое воздействие на пластину в диапазоне циклических дозирующих нагрузок сжатия от σ=(-3÷-10) кг/мм2 до σmax(+1÷+4) кг/мм2 и сдвига τ=(±3,0÷±5,0) кг/мм2.



 

Похожие патенты:
Изобретение относится к способу изготовления пустотелых изделий из алюминиевых сплавов. .

Изобретение относится к способам получения сверхпластичных листов из алюминиевых сплавов системы алюминий-магний-литий, применяемых для формовки изделий сложной формы, используемых в качестве конструкционных материалов.
Изобретение относится к цветной металлургии и может быть использовано для получения изделий методами обработки давлением. .

Изобретение относится к области металлургии, в частности к технологии термомеханической обработки алюминиевых или магниевых сплавов при получении из них изделий с нано- и микрокристаллической структурой.
Изобретение относится к области металлургии, а именно к способам получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий (Al-Mg-Sc), содержащих также цирконий или цирконий и марганец, применяемых для сверхпластической формовки изделий сложной формы, а также в качестве конструкционного материала.

Изобретение относится к листовому изделию из алюминиевого сплава и может быть использовано для изготовления броневого листа. .
Изобретение относится к области металлургии, а именно к способам получения деформированных заготовок из алюминиевых сплавов системы алюминий-магний-марганец-скандий-цирконий, применяемых в качестве конструкционного материала.
Изобретение относится к области металлургии, преимущественно к термической обработке и обработке давлением металлов, и предназначено для изготовления сверхпластичных листов из алюминиевого сплава.

Изобретение относится к обработке металлов давлением и может быть использовано для получения нанокристаллической структуры металла. .
Изобретение относится к области обработки металлов давлением, в частности к упрочнению металлов пластическим деформированием. .

Изобретение относится к изготовлению металлических изделий, в частности, из труднообрабатываемых интерметаллических сплавов. .

Изобретение относится к обработке металлов давлением, в частности к подготовке материала заготовки к дальнейшей обработке методами объемной штамповки. .

Изобретение относится к области обработки металлов давлением, и в частности к способам упрочнения преимущественно толстолистовых заготовок. .

Изобретение относится к машиностроению и может быть использовано для упрочнения готовых изделий из легированных сталей, сплавов и цветных металлов. .

Изобретение относится к обработке материалов и изделий из них, а именно к устройствам упрочнения металла методами поверхностной пластической деформации. .

Изобретение относится к области упрочнения отверстий в деталях и может быть использовано в ответственных деталях гидротурбинных двигателей, деталей энергоблоков, работающих в атомном режиме, например на подводных лодках, атомных электростанциях, космических объектах и др.

Изобретение относится к черной металлургии, в частности к производству магнитомягкого железа. .

Изобретение относится к области прокатки. Для обеспечения заданного коэффициента упругости металлической полосы ее получают цельной без сварных швов из ферритной, мартенситной или смешанной ферритной/мартенситной стали, содержащей по меньшей мере один участок, в котором кристаллиты имеют сравнительно более выраженную анизотропную ориентацию, и по меньшей мере один участок, в котором кристаллиты имеют сравнительно менее выраженную анизотропную ориентацию, и при этом рентгеновские θ-2θ дифрактограммы, снятые в двух противоположных точках полосы с использованием излучения CuKα, не показывают статистически существенную разницу в отношении положения и формы соответствующих пиков. Прокатку полосы 11 осуществляют между валком 21, имеющим ось вращения 211 и поверхность 212 прокатки с одной стороны, и опорой 31, имеющей опорную поверхность 311 с другой стороны, при этом угловую скорость валка регулируют. Полученную полосу используют при изготовлении пинцетов, опорных имплантатов и суставных протезов. 6 н. и 15 з.п. ф-лы, 4 табл., 11 ил.
Наверх