Способ производства стальной высокопрочной наноструктурированной арматуры


 


Владельцы патента RU 2471004:

Открытое акционерное общество "Магнитогорский метизно-калибровочный завод "ММК-МЕТИЗ" (RU)

Изобретение относится к металлургии, в частности к производству стальной высокопрочной арматуры. Способ производства стальной высокопрочной арматуры включает выплавку стали заданного химического состава, в котором поддерживают суммарное содержание Cr+Ni+Cu<0,14, a соотношение алюминия к бору Al/B в пределах 10-20, термическую обработку катанки осуществляют путем нагрева в печи до температуры 900-940°C с последующей изотермической закалкой в течение 85-110 с в расплаве свинца при температуре 530-560°C и окончательным охлаждением водой, а волочение катанки производят с суммарной степенью обжатия 57-62%. Изобретение позволит получить после термообработки наноструктуру металла, состоящую из феррито-карбидной смеси с межпластинчатым расстоянием 80-180 нм и небольшого количества структурно свободного феррита в виде островков по границам зерен. В холоднодеформированной высокопрочной арматуре обеспечивается прочность не менее 1570 Н/мм2, условный предел текучести не менее 1400 Н/мм2 и относительное удлинение при разрыве не менее 6%. 1 ил.

 

Изобретение относится к металлургии, в частности к производству стальной высокопрочной проволочной арматуры, производимой методом холодного волочения и термомеханической обработки.

Известен способ производства высокопрочной арматурной проволоки, включающий ускоренное охлаждение катанки после прокатки заготовки, выплавленной из высокоуглеродистой стали стандартных марок 70-85. В этом способе осуществляют ускоренное охлаждение катанки перед виткоукладчиком сортового стана горячей прокатки, укладку витков в закрытую камеру, охлаждение витков в этой камере до заданной температуры продувкой газом с заданной скоростью охлаждения и окончательное охлаждение на воздухе до цеховой температуры. При этом охлаждение продувкой газом ведут до температуры не выше 500°C. Данным способом достигается возможность исключения операции термообработки перед холодным волочением и термомеханической обработкой высокопрочной арматуры и при этом достигается прочность готовой арматуры до 1370 Н/мм2 (патент на изобретение РФ №2044073, кл. C21D 9/52, 1995 г.).

Известен также способ производства стальной высокопрочной арматуры, включающий выплавку стали, ее разливку, горячую прокатку, термическую обработку (патентирование) горячекатаного круглого проката, травление, холодное волочение, нанесение периодического профиля и отпуск арматуры при температуре 225-450°C. При этом выплавляют сталь марок типа 70-85 следующего химического состава при соотношении ингредиентов, мас.%:

Углерод 0,71-0,93

Марганец 0,3-1,0

Кремний 0,17-0,37

Сера не более 0,040

Фосфор не более 0,040

Медь не более 0,20

Железо Остальное

(И.А.Юхвец. Производство высокопрочной проволочной арматуры. М., Металлургия, 1973 г.).

Основными недостатками всех известных способов производства является то, что готовая арматура имеет недостаточную прочность, низкий предел текучести и относительное удлинение.

Техническая задача, решаемая изобретением, заключается в получении стальной высокопрочной арматуры для предварительно напряженных железобетонных конструкций с повышенными показателями прочности, текучести и относительного удлинения.

Поставленная задача достигается тем, что в способе производства стальной высокопрочной арматуры, включающем выплавку стали, прокатку в катанку, термическую обработку катанки, травление, холодное волочение, нанесение периодического профиля, термомеханическую обработку и порезку арматуры на мерную длину, выплавляют сталь следующего химического состава, мас.%:

Углерод 0,77-0,85

Марганец 0,50-0,80

Кремний 0,20-0,37

Сера 0,016-0,020

Фосфор 0,016-0,025

Хром не более 0,10

Никель не более 0,10

Медь не более 0,10

Алюминий 0,01-0,03

Бор 0,001-0,003

Железо - остальное,

в которой поддерживают суммарное содержание Cr+Ni+Cu<0,14, а соотношение алюминия к бору Al/B в пределах 10-20, термическую обработку катанки производят путем нагрева в печи до температуры 900-940°C с последующей изотермической закалкой в течение 85-110 с в расплаве свинца при температуре 530-560°C и окончательным охлаждением водой, а волочение катанки производят с суммарной степенью обжатия 57-62%.

Выбранные пределы содержания углерода (0,77-0,85%) в сочетании с марганцем (0,50-0,80%), хромом, никелем и медью (до 0,10 каждого, но при соотношении Cr+Ni+Cu<0,14) при введение алюминия и бора в сталь позволят измельчать микроструктуру стали при ее термообработке. Соотношение содержания алюминия к бору Al/B в пределах 10-20 обеспечит после термообработки горячекатаной катанки получение наноструктурированной микроструктуры металла, состоящей из феррито-карбидной смеси с межпластинчатым расстоянием 60-200 нм, что в итоге обеспечивает в конечном продукте - холоднодеформированной высокопрочной арматуре - прочность не менее 1570 Н/мм2, условный предел текучести не менее 1400 Н/мм2 и относительное удлинение при разрыве не менее 6%.

Пример осуществления способа производства стальной высокопрочной арматуры.

По заказу ОАО «ММК-МЕТИЗ» была выплавлена сталь в 180-тонной электропечи ОАО «ММК», обработана в агрегате «печь-ковш», разлита на МНЛЗ в заготовку сечением 150×150 мм и прокатана в катанку круглого сечения диаметром 15,5 мм на сортовом стане «170», имеющая следующий химический состав, мас.%:

Углерод 0,79

Марганец 0,62

Кремний 0,29

Сера 0,017

Фосфор 0,018

Хром 0,05

Никель 0,02

Медь 0,05

Алюминий 0,02

Бор 0,002

Железо - остальное

Соотношение Cr+Ni+Cu составило 0,12, а соотношение Al/B составило 10. После наноструктурирующей термообработки катанки в непрерывном агрегате, заключающейся в нагреве катанки до температуры 930°C, изотермической закалке в расплаве свинца при температуре 540°C с дальнейшим охлаждением водой, получили микроструктуру стали, состоящую из феррито-карбидной смеси с межпластинчатым расстоянием 80-180 нм и небольшого количества структурно свободного феррита в виде островков по границам зерен.

На Фиг.1 (а, б) представлена макроструктура стали из феррито-карбидной смеси.

Термообработанную катанку проволочили в проволоку диаметром 10,0 мм, после чего нанесли на ее поверхность трехсторонний периодический профиль, уменьшив номинальный диаметр арматуры до 9,6 мм, подвергли отпуску под натяжением при температуре 400°C, охладили проточной водой и порезали на мерные длины. Механические испытания полученной стальной высокопрочной арматуры номинальным диаметром 9,6 мм показали следующие свойства:

временное сопротивление разрыву 1590 Н/мм2;

условный предел текучести 1410 Н/мм2;

относительное удлинение при разрыве 7%;

твердость 41 HRC,

что полностью соответствует техническим требованиям к высокопрочной стержневой холоднодеформированной арматуре периодического профиля диаметром 9,6 мм для армирования железобетонных шпал.

Способ производства высокопрочной стальной арматуры с получением наноструктуры, включающий выплавку стали, прокатку в катанку, термическую обработку катанки, травление, холодное волочение, нанесение периодического профиля, термомеханическую обработку и порезку арматуры на мерную длину, отличающийся тем, что выплавляют сталь следующего химического состава, мас.%:

углерод 0,77-0,85
марганец 0,50-0,80
кремний 0,20-0,37
сера 0,016-0,020
фосфор 0,016-0,025
хром не более 0,10
никель не более 0,10
медь не более 0,10
алюминий 0,01-0,03
бор 0,001-0,003
железо остальное,

при суммарном содержании Cr+Ni+Cu<0,14 и соотношении Al/B в пределах 10-20, термическую обработку катанки производят путем нагрева в печи до температуры 900-940°C с последующей изотермической закалкой в течение 85-110 с в расплаве свинца при температуре 530-560°C и окончательным охлаждением водой, а волочение катанки производят с суммарной степенью обжатия 57-62%.



 

Похожие патенты:
Изобретение относится к области металлургии. .

Изобретение относится к области металлургии, а именно к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°С. .
Изобретение относится к области металлургии, а именно к прокату из полосовой стали, используемой в условиях динамических нагрузок и повышенного трения. .

Изобретение относится к области металлургии, а именно к разработке конструкционных сталей перлитного класса, упрочняемых объемно-поверхностной закалкой (ОПЗ). .

Изобретение относится к области термической обработки деталей из стали перлитного класса. .

Изобретение относится к области металлургии, а именно к составу жаропрочной стали мартенситного класса, применяемой для изготовления элементов тепловых энергетических установок с рабочей температурой пара до 630°C.

Изобретение относится к области металлургии, в частности к производству сварочных материалов, и может быть использовано для автоматической сварки теплоустойчивых сталей перлитного класса при изготовление изделий в энергетическом машиностроении.
Изобретение относится к области металлургии, а именно к составам сталей, используемых для изготовления деталей машин и оборудования. .
Изобретение относится к области металлургии. .

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованной полосы повышенной прочности, предназначенной для изготовления деталей автомобиля методом штамповки Для повышения прочностных характеристик стали с сохранением высокой пластичности проводят аустенитизацию (3) углеродистой стали (1) при температуре, превышающей температуру аустенитизации, затем вводят сталь (1) в ванну (2) с закалочной средой (21) для охлаждения до температуры, меньшей температуры аустенитизации, доводят сталь (1) до температуры бейнитного превращения и выдерживают в течение определенного времени при этой температуре, при этом количество закалочной среды (21) и длительность контакта стали с закалочной средой (21) таковы, что в общей структуре углеродистой стали (1), находящейся в ванне (2) с закалочной средой (21), образуется заданная доля бейнитной структуры, при выходе углеродистой стали (1) из ванны (2) остатки закалочной среды (21) удаляют с ее поверхности воздействием газа, затем углеродистую сталь (1) перемещают через расположенную после ванны станцию (13) изотермической выдержки, в которой проводят превращение остальных составляющих структуры углеродистой стали (1) в бейнит, протекающее при температуре бейнитного превращения и без отклонения углеродистой стали (1) при ее перемещении до полного формирования в ней бейнитной структуры и окончательно охлаждают сталь (1) на станции (17, 18) охлаждения.

Изобретение относится к технологии термической обработки длинномерных металлических изделий, в частности при закалке ножей для дорожных машин, предназначенных для очистки дорожного покрытия.

Изобретение относится к области металлургии, в частности к охлаждению рулона горячекатаной полосы. .

Изобретение относится к области обработки металлов давлением, в частности к охлаждению рулонов горячекатаной металлической полосы. .

Изобретение относится к прокатному производству, в частности к технологии изготовления стальной упаковочной ленты. .

Изобретение относится к способу и установке для охлаждения металлической полосы при ее протягивании при проведении термообработки. .
Изобретение относится к обработке и отделке полосового проката, в частности ленты, предназначенной для упаковки рулонного металла и листов в пачках. .

Изобретение относится к технологии и оборудованию для термической обработки металлов. .

Изобретение относится к области производства стальной ленты и может быть использовано для получения режущего инструмента, в частности пильных полотен и дисков из термообработанной ленты толщиной 0,9 - 3,2 мм и шириной от 36 до 410 мм.

Изобретение относится к области металлургии, в частности к термической обработке стали. .

Изобретение относится к строительным железобетонным конструкциям и их армированию. .
Наверх