Способ извлечения редкоземельных металлов из фосфогипса



Способ извлечения редкоземельных металлов из фосфогипса
Способ извлечения редкоземельных металлов из фосфогипса
Способ извлечения редкоземельных металлов из фосфогипса
Способ извлечения редкоземельных металлов из фосфогипса
Способ извлечения редкоземельных металлов из фосфогипса

 


Владельцы патента RU 2471011:

Общество с ограниченной ответственностью "Научно-производственное предприятие Уралхим" (RU)

Изобретение относится к способу извлечения редкоземельных металлов из фосфогипса и может быть использовано в технологии получения соединений редкоземельных металлов при комплексной переработке апатитов, в частности к получению концентрата редкоземельных металлов (РЗМ) из фосфогипса. Способ включает сорбцию редкоземельных металлов. При этом перед сорбцией фосфогипс измельчают в воде с получением пульпы при соотношении Тв:Ж=1:(5-10). Сорбцию осуществляют путем введения в полученную пульпу сорбента, содержащего сернокислые и фосфорнокислые функциональные группы, при соотношении Тв:сорбент=1:(5-10) и перемешивании в течение 3-6 ч. Техническим результатом изобретения является повышение степени извлечения РЗМ в конечный продукт. 5 табл., 5 пр.

 

Изобретение относится к технологии получения соединений редкоземельных элементов при комплексной переработке апатитов, в частности к получению концентрата редкоземельных металлов (РЗМ) из фосфогипса.

Известен способ извлечения редкоземельных элементов (RU 2225892, опубл. 20.03.2004 г.) [1]. Способ включает выщелачивание фосфогипса путем последовательной обработки нескольких порций фосфогипса раствором серной кислоты с концентрацией 20-25% при Ж:Т=2-3, перевод редкоземельных элементов в раствор, кристаллизацию концентрата РЗЭ из полученного раствора выщелачиванием, которую осуществляют при температуре 20-80°С с введением в раствор выщелачивания концентрированной серной кислоты до содержания ее в растворе не менее 30%. Выщелачивание лантаноидов из фосфополугидрата растворами серной кислоты средних концентраций позволяет выделять лантаноиды из раствора выщелачивания в виде сульфатного концентрата, не требующего использования дорогих экстрагентов или поверхностно-активных веществ.

Известен также способ извлечения редкоземельных элементов из фосфогипса (Влияние основных параметров процесса на эффективность выщелачивания РЗЭ из фосфогипса серной кислотой / A.M.Андрианов, Н.Ф.Русин, Л.М.Буртненко, В.Д.Федоренко, М.К.Ольмезов // Журнал прикладной химии, 1976. - т.49. - №3. - С.636-638.) [2].

Согласно способу [2] лантаноиды извлекают из фосфогипса, получаемого при сернокислотной переработке апатитового концентрата на минеральные удобрения. Выщелачивание первой порции фосфогипса осуществляют 2-6%-ным раствором серной кислоты при отношении жидкости к твердому телу 2-3. Раствор выщелачивания отделяют и используют для выщелачивания последующих порций фосфогипса. Концентрацию серной кислоты на каждой стадии увеличивают согласно соотношению , где - приращение концентрации серной кислоты, мас.%, а - приращение концентрации пентаоксида фосфора при выщелачивании предыдущей порции фосфогипса, г/л. Раствор выщелачивания используют не менее трех раз. Предельная концентрация серной кислоты составляет 24 мас.%. Остаток фосфогипса промывают водой. Промывной раствор используют при выщелачивании фосфогипса. Перед выщелачиванием фосфогипс измельчают до крупности 100 мкм. Достигаемый результат заключается в повышении эффективности процесса за счет повышения концентрации лантаноидов в растворе в 3 раза (до 3,7 г/л) при обеспечении высокого извлечения (среднее извлечение за 4-5 стадий составляет 32,65-38,68%).

Выделение редкоземельных элементов из фосфогипса известными способами [1, 2] требует высоких затрат на реагенты (соли, кислоты), а также значительных энерго- и трудозатрат при получении концентратов, связанных с фильтрацией и промывкой осадков. Кроме этого, на этой стадии происходит потеря РЗМ за счет сокристаллизации с гипсом и осаждения двойных сульфатов РЗМ. Использование неорганических кислот для выщелачивания РЗМ из фосфогипса приводит к большому удельному расходу ресурсов и увеличению негативного экологического влияния на окружающую среду.

Наиболее близким к заявляемому изобретению по технической сущности и достигаемому результату является "Способ извлечения редкоземельных металлов из фосфогипса", RU 2416654 С1, кл. С22В 59/00 опубл. 20.04.2011) [3]. Способ включает выщелачивание фосфогипса раствором серной кислоты с переводом редкоземельных металлов в раствор. Перед выщелачиванием осуществляют отмывку фосфогипса от фосфора водой. Выщелачивание фосфогипса проводят раствором серной кислоты при ее концентрации от 3 до 250 г/л. Извлечение редкоземельных металлов из раствора выщелачивания осуществляют концентрированием их на катионите, снятием с катионита с получением товарного регенерата и с возвращением в оборотный цикл выщелачивания обедненного по редкоземельным металлам водного раствора серной кислоты.

Однако известно, что сернокислая среда способствует повторному осаждению растворенных РЗМ в виде труднорастворимых двойных сульфатов, уменьшая степень извлечения РЗМ из фосфогипса серной кислотой (Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я и др. Соединения редкоземельных элементов. Сульфаты, селенаты, телураты, хроматы. - Ленинград: Наука, 1986. - 365 с.) [4].

Использование катионита, содержащего сернокислые функциональные группы, приводит к уменьшению сорбируемости РЗМ по причине конкурентной сорбции ионов примесей (Са, Mg, Fe, Al, …), т.к. известно, что сорбенты с сернокислыми функциональными группами не избирательны к ионам РЗМ (Кокотов Ю.А. Иониты и ионный обмен. - Ленинград: Химия, 1980. - 152 с.) [5].

Задачей настоящего изобретения является повышение степени извлечения РЗМ в конечный продукт при сокращении затрат на осуществление способа и уменьшении негативного экологического влияния на окружающую среду в процессе практической реализации способа. Для решения поставленной задачи заявлен способ, согласно которому фосфогипс измельчают и растворяют в воде при соотношении Тв:Ж=1:(5-10), сорбцию осуществляют путем введения в полученную пульпу сорбента, содержащего сернокислые и фосфорнокислые функциональные группы, до соотношения Тв:сорбент=1:(5-10), выщелачивание ведут при перемешивании в течение 3-6 ч.

В заявленном способе растворение фосфогипса происходит за счет поступления в систему ионов водорода функциональных групп сорбента, поэтому введения в систему неорганической кислоты не требуется. Отсутствие сернокислой среды исключает повторное осаждение растворенных РЗМ в виде труднорастворимых двойных сульфатов, повышая степень извлечения РЗМ из фосфогипса. Высокая избирательность к РЗМ сорбента, содержащего сернокислые и фосфорнокислые функциональные группы, приводит к улучшению последующего качества элюатов и упрощению процесса их дальнейшей переработки (В.Ф.Борат, Л.Н.Адеева, Т.В.Лукиша. Изучение сорбции скандия из солянокислых растворов хелатной смолой PUROLITE S-957 // Химия и химическая технология, 2010, Т.53, Вып.9, С.99-101) [6].

При соотношении Ж:Т меньше 5, образуется плотная, плохо промешиваемая пульпа фосфогипса, что осложняет процесс сорбции РЗМ. При отношении Ж:Т больше 10 резко увеличиваются объемы растворов, что ведет к увеличению количества оборудования. В то же время положительных эффектов по извлечению РЗМ не наблюдается. Максимальная сорбируемость РЗМ достигается за время сорбции 3-6 часов. При времени контакта меньше 3 часов степень извлечения РЗЭ незначительна, при времени контакта более 6 часов увеличения степени извлечения не происходит. При отношении Тв:сорбент меньше 5 степень извлечения РЗМ практически не изменяется. При увеличении этого показателя сверх 10 степень извлечения РЗМ уменьшается.

Таким образом, новый технический результат, достигаемый заявленным способом, заключается в повышении степени извлечения РЗМ и упрощении процесса извлечения РЗМ из фосфогипса.

Экспериментальную проверку заявленного способа осуществляли при извлечении из фосфогипса редкоземельных металлов, а именно, всей группы лантаноидов, иттрия и скандия. Их суммарное содержание определяли методом эмиссионного спектрального анализа с индуктивно связанной плазмой. В качестве сорбента, содержащего сернокислые и фосфорнокислые функциональные группы, использовали катионит S-957 (PUROLITE LTD). Может быть использована в этом качестве ионообменная смола Diphonix производства Eichrom Technologies.

Пример 1. Брали навеску фосфогипса 20 грамм (в пересчете на абсолютно сухой), измельчали, помещали в реактор и заливали ее водой до соотношения Ж:Т=5, после чего в полученную пульпу добавляли сорбент в количестве 4 грамм (в пересчете на абсолютно сухой вес) и выдерживали при перемешивании в течение 5 часов при комнатной температуре. Также проводили опыт с такими же условиями, но без добавления сорбента. Результаты исследований приведены в табл.1.

Пример 2. Брали навеску фосфогипса 20 грамм (в пересчете на абсолютно сухой), измельчали, помещали в реактор и заливали ее различным количеством воды, после чего в полученную пульпу добавляли сорбент в количестве 4 грамм (в пересчете на абсолютно сухой вес) и выдерживали при перемешивании в течение 5 часов при комнатной температуре. Результаты исследований приведены в табл.2

Пример 3. Брали навеску фосфогипса 20 грамм (в пересчете на абсолютно сухой), измельчали, помещали в реактор и заливали ее водой до соотношения Ж:Т=5, после чего в полученную пульпу добавляли сорбент в количестве 4 грамм (в пересчете на абсолютно сухой вес) и выдерживали при перемешивании в течение 3, 5, 6, 7, 9 часов при комнатной температуре. Результаты исследований приведены в табл.3.

Пример 4. Брали навеску фосфогипса 20 грамм (в пересчете на абсолютно сухой), измельчали, помещали в реактор и заливали ее водой до соотношения Ж:Т=5, после чего в полученную пульпу добавляли сорбент в количестве 1,42; 2; 3,33; 4,0; 5,0; 6,67 (соотношение твердое : сорбент равно соответственно 14, 10, 6, 5, 4, 3) грамм (в пересчете на абсолютно сухой вес) и выдерживали при перемешивании в течение 5 часов при комнатной температуре. Результаты исследований приведены в табл.4.

Пример 5. Брали навески фосфогипса 20 грамм (в пересчете на абсолютно сухой), измельчали, помещали в реактор и заливали их водой до соотношения Ж:Т=5, после чего в полученную пульпу добавляли сорбенты в количестве 4 грамм (в пересчете на абсолютно сухой вес) и выдерживали при перемешивании в течение 5 часов при комнатной температуре. Результаты исследований приведены в табл.5.

Из данных таблиц 1-5 видно, что степень извлечения РЗМ в конечный продукт составляет не менее 60%. При этом неиспользование неорганических кислот для выщелачивания РЗМ из фосфогипса снижает удельный расход ресурсов и негативное экологическое влияние на окружающую среду.

Способ извлечения редкоземельных металлов из фосфогипса, включающий сорбцию редкоземельных металлов, отличающийся тем, что перед сорбцией фосфогипс измельчают в воде с получением пульпы при соотношении Тв:Ж=1:(5-10), сорбцию осуществляют путем введения в полученную пульпу сорбента, содержащего сернокислые и фосфорнокислые функциональные группы, при соотношении Тв:сорбент=1:(5-10) и перемешивании в течение 3-6 ч.



 

Похожие патенты:
Изобретение относится к способу переработки шлифотходов от производства постоянных магнитов Nd-Fe-B. .
Изобретение относится к способам выделения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности.

Изобретение относится к способу получения чистого гольмия или его оксидов из бедного или техногенного сырья с помощью метода ионной флотации. .

Изобретение относится к способу получения чистого лантана или его оксидов из бедного или техногенного сырья с помощью метода ионной флотации. .

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов редкоземельных элементов.
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и цемента.
Изобретение относится к способу переработки фосфогипса с извлечением редкоземельных элементов и фосфора. .

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов редкоземельных элементов.

Изобретение относится к способу получения чистого церия или его оксидов из бедного или техногенного сырья с помощью метода флотоэкстракции. .
Изобретение относится к способам гидрометаллургической переработки минерального сырья, а именно к способам глубокой переработки промышленных отходов, и в частности к комплексной переработке фосфогипса.
Изобретение относится к способу выделения меди и/или никеля из растворов, содержащих кобальт. .

Изобретение относится к способу получения угольного сорбента, применяемого для извлечения редких металлов, в частности цианида золота, из водных щелочных растворов.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов редкоземельных элементов.
Изобретение относится к области сорбционной технологии извлечения золота из растворов, полученных в результате цианидного выщелачивания золотосодержащих рудных продуктов.
Изобретение относится к способу выделения золота из растворов с использованием смолы. .
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и цемента.

Изобретение относится к многоколоночной ионообменной хроматографии, и может быть использовано в гидрометаллургии. .

Изобретение относится к гидрометаллургии, в частности к способу извлечения урана из сернокислотных растворов и пульп. .
Изобретение относится к области сорбционной технологии извлечения золота из растворов, полученных в результате цианидного выщелачивания золотосодержащих рудных продуктов.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов редкоземельных элементов.
Изобретение относится к металлургии, а именно способам извлечения кадмия из вторичного сырья, и может быть использовано при переработке отрицательных ламелей никель-кадмиевых аккумуляторов.
Наверх