Устройство для контроля поворота объекта

Устройство содержит формирователь излучения, включающий объектив и расположенную в его фокальной плоскости светящуюся марку, скрепляемый с контролируемым объектом уголковый отражатель, три двугранные угла которого выполнены с заведомо заданными отступлениями от 90°, регистрирующее устройство, установленное по ходу излучения от отражателя, выполненное в виде объектива и установленного в его фокальной плоскости приемника оптического излучения, выход которого соединен с блоком обработки. Устройство дополнительно содержит плоское зеркало, центр которого расположен от оптической оси объектива формирователя излучения на расстоянии H=L·tgΔ, где L - длина проекции отрезка между центрами отражателя и плоского зеркала на оптическую ось, Δ - угол между нормалью к плоскому зеркалу и оптической осью формирователя излучения, равный углу отклонения от оптической оси формирователя излучения пучка лучей, отраженных от уголкового отражателя. Марка формирователя излучения выполнена в форме, не обладающей свойством осевой симметрии. Приемник оптического излучения выполнен в виде матричного фотоприемника. Технический результат - повышение точности измерения поворота объекта за счет повышения чувствительности к углу скручивания и определения знаков коллимационных углов. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к контрольно-измерительной технике и предназначено для измерения углов поворота объекта оптико-электронным способом.

Известно оптико-электронное угломерное устройство, описанное в А.С. СССР №511520 от 25.04.1976 г., МПК G01B 11/26. которое включает оптико-электронный автоколлиматор и специальный отражатель. При этом автоколлиматор снабжен фотоэлектрической регистрирующей системой, выходные сигналы которой пропорциональны величинам измеряемых углов.

Недостатком этого устройства является невысокая точность измерений углов, обусловленная малой чувствительностью к углу скручивания.

Наиболее близким по технической сущности к изобретению является устройство контроля углов поворота объекта, А.С. СССР №769316 от 07.10.80 г., МПК G01B 11/26, выбранное в качестве прототипа.

Устройство контроля поворота объекта, содержащее формирователь излучения, включающий объектив и расположенную в его фокальной плоскости светящуюся марку, скрепляемый с контролируемым объектом уголковый отражатель, три двугранных углы которого выполнены с заведомо заданными отступлениями от 90°, и регистрирующее устройство, установленное по ходу излучения от отражателя, выполненное в виде объектива и установленного в его фокальной плоскости приемника оптического излучения, выход которого соединен с блоком обработки. Кроме того, заведомо заданные отступления от 90° двух двугранных углов имеют равные величины и одинаковые знаки, а заведомо заданное отступление от 90° третьего двугранного угла определяется из условия:

- показатель преломления тетраэдрического отражателя, равный

где δ - величина заданного отступления двугранных углов, имеющих равные знаки;

- единичный орт падающего луча;

- единичный орт нормали к передней поверхности тетраэдрического отражателя;

n - показатель преломления стекла уголкового отражателя.

Недостатком указанного устройства является невысокая точность измерений углов, обусловленная малой чувствительностью к углу скручивания, а также невозможность определения знака измеряемых коллимационных углов.

Задачей заявляемой совокупности признаков является повышение точности измерения поворота объекта за счет повышения чувствительности к углу скручивания и определения знаков коллимационных углов.

Указанная задача решается за счет того, что в устройстве для контроля поворота объекта, содержащем формирователь излучения, включающий объектив и расположенную в его фокальной плоскости светящуюся марку, скрепляемый с контролируемым объектом уголковый отражатель, три двугранные угла которого выполнены с заведомо заданными отступлениями от 90°, и регистрирующее устройство, установленное по ходу излучения от отражателя, выполненное в виде объектива и установленного в его фокальной плоскости приемника оптического излучения, выход которого соединен с блоком обработки, устройство дополнительно содержит плоское зеркало, центр которого расположен на расстоянии H=L·tgΔ от оптической оси объектива формирователя излучения, при этом L - длина проекции отрезка между центрами отражателя и плоского зеркала на оптическую ось, Δ - угол между нормалью к плоскому зеркалу и оптической осью формирователя излучения, равный углу отклонения от оптической оси формирователя излучения пучка лучей, отраженных от уголкового отражателя, при этом марка формирователя излучения выполнена в форме, не обладающей свойством осевой симметрии, а приемник оптического излучения выполнен в виде матричного фотоприемника. Кроме того, заведомо заданные отступления от 90° двух двугранных углов между отражающими гранями имеют равные величины и одинаковые знаки, а заведомо заданное отступление от 90° третьего двугранного угла между отражающими гранями определяется из условия:

- показатель преломления тетраэдрического отражателя, равный

где - единичный орт падающего луча;

- единичный орт нормали к передней поверхности тетраэдрического отражателя;

n - показатель преломления стекла уголкового отражателя;

δ - величина заданного отступления двугранных углов, имеющих равные знаки, при этом величину угла Δ определяют из выражения:

.

Кроме того, марка формирователя излучения выполнена в виде прямоугольника, а уголковый отражатель выполнен в виде стеклянного тетраэдра с фронтальной преломляющей гранью и тремя отражающими гранями.

Сущность заявляемого устройства поясняется чертежами, где

на фиг.1 приведена принципиальная схема заявляемого устройства;

фиг.2 иллюстрирует характер изображения в фокальной плоскости объектива регистрирующего устройства (а - в отсутствие поворота объекта; б, в - при положительных и отрицательных углах поворота соответственно).

фиг.3 поясняет понятие орта вне осевого пучка;

фиг.4 иллюстрирует характер смещения изображений марки при повороте тетраэдрического отражателя на коллимационные углы.

Устройство (фиг.1) содержит формирователь излучения, включающий объектив 1 и расположечную в его фокальной плоскости светящуюся неосесимметричную марку 2, скрепляемый с контролируемым объектом стеклянный уголковый отражатель 3, три двугранные угла которого выполнены с заведомо заданными отступлениями от 90°, регистрирующее устройство, выполненное в виде объектива 1 и установленного в его фокальной плоскости приемника оптического излучения 4, установленных по ходу излучения от отражателя 3, а также плоское зеркало 5. Кроме того, к выходу приемника оптического излучения 4 подключен блок обработки (на фигурах не показан).

При этом вершина отражателя 3 совмещена с началом системы координат OXYZ. Отражатель 3 расположен симметрично относительно плоскости ZOX, при этом угол к0

равен углу между ребром двугранного угла, имеющего ошибку δ3, и осью OZ и считается положительным, если OY совмещается с проекцией ребра вращением относительно OZ против часовой стрелки.

Устройство для контроля поворота объекта работает следующим образом.

Лучистый поток от марки 2 с помощью объектива 1 направляется на уголковый отражатель 3. Поскольку три прямых двугранных угла отражателя 3 выполнены с отступлениями от 90°, он разделяет падающий на него пучок на шесть пучков, которые расположены попарно в трех плоскостях, не совпадающих друг с другом. Т.е. отражатель делит исходный пучок на три пары пучков.

Рассмотрим действие первой пары отраженных пучков. Отраженный от уголкового отражателя 3 пучок лучей 6 (на фиг.1) с последовательностью отражений с, a, b (парный ему пучок 7 с последовательностью отражений а, b, с не используется) под углом Δ падает на плоское зеркало 5. После отражения от плоского зеркала 5, орт нормали которого коллинеарен орту пучка 6, пучок лучей 6 изменяет свое направление на противоположное (пучок 8) и после второго отражения от уголкового отражателя 3 (пучок 9) формирует в фокальной плоскости объектива 1 регистрирующего устройства изображение 9' (фиг.2) марки 2. При отсутствии поворота отражателя 3 на угол скручивания изображение 9' совпадает с центром поля зрения и не развернуто относительно своего центра. При повороте объекта, а следовательно, и закрепленного на нем отражателя 3, на углы φ, κ, ψ относительно осей OX, OY, OZ изображение 9' сместится относительно оси OZ на величину Bz. При этом орт пучка 9 определяют по выражению:

где - орт луча, выходящего из центральной точки марки 2, т.е. орт падающего на уголковый отражатель 3 пучка,

- матрица поворота, в которой φ - угол скручивания, а ψ - угол поворота вокруг оси OZ (коллимационный угол), к - угол поворота вокруг оси OY (коллимационный угол).

- матрица действия отражателя для 6 и 8 пучков соответственно (параметр Δ по известным соотношениям определяется величинами отклонений δ заданных отступлений от 90° двугранных углов тетраэдрического отражателя )

- матрица действия плоского зеркала 5 (Δ - малый угол).

В соответствии с выражением (1) орт пучка 9 определяют как:

Из выражения (2) следует, что у изображения 9', сформированного пучком 9, отсутствует смещение по оси OY, а смещение по оси OZ составляет:

Отсюда угол скручивания

Сравним выражение (3) с аналогичным выражением, получаемым в прототипе: z1,2=±Δ·φ·f'. Видно, что чувствительность измерения к углу скручивания φ, в заявляемом устройстве увеличена в два раза. Кроме того, в данном устройстве величина параметра Δ угловым полем регистрирующего устройства не ограничена, поскольку при нулевом значении угла скручивания φ пучок 9 формирует изображение 9' в центре поля зрения регистрирующего устройства.

В данном случае пучок 7 с последовательностью отражений a, b, c в измерении не участвует, т.к. при отражении от отражателя 2 он не попадает в объектив 1 регистрирующего устройства. Однако измерение угла скручивания можно проводить и с использованием пучка 7. Для этого плоское зеркало 5 необходимо установить по ходу этого пучка (по другую сторону от формирователя излучения) (фиг.1). После отражения от плоского зеркала 5 и повторного отражения от отражателя 2 данный пучок формирует в фокальной плоскости объектива 1 регистрирующего устройства изображение, у которого также, как и у парного ему изображения, будет отсутствовать смещение вдоль оси OY. При этом смещение вдоль OZ связано с углом скручивания соотношением . Стоит отметить, что использование в измерении обоих парных пучков (6 и 7) является нецелесообразным, поскольку в таком случае однозначное отождествление изображений с формирующими их пучками становится затруднительным.

Вторая пара отраженных пучков с последовательностями отражений с, а, b (пучок 10) и b, а, с (пучок 11) соответственно отражаются тетраэдрическим отражателем 3 в направлении, обратном падающему лучу. Данные пучки чувствительны лишь к повороту контролируемых коллимационных углов κ и ψ.

Пусть светящаяся марка 2, установленная в фокальной плоскости объектива 1 формирователя изображения, имеет форму, не обладающую свойством осевой симметрии, например, прямоугольную. Рассмотрим точку, расположенную на краю марки 2 (фиг.3). Орт луча, выходящего из этой точки, составляет малый угол ε с оптической осью объектива 1 в плоскости XOY и может быть задан матрицей:

При отсутствии углов поворота отражателя орт пучка 10 определяют по выражению:

где - матрица действия отражателя для пучка 10, равная:

Поскольку для малых углов и выражение для может быть представлено в виде:

Вид выражения (4) позволяет трактовать его как поворот орта обратного по направлению падающему орту Аε, на угол относительно оси ОХ:

Также, при отсутствии углов поворота отражателя орт пучка 11 определяют по выражению:

где - матрица действия отражателя для пучка 11, равная:

Поскольку для малых углов и выражение для может быть записано в виде:

Вид выражения (5) позволяет трактовать его как поворот орта , обратного по направлению падающему орту Aε, на угол относительно оси ОХ:

Таким образом, изображение, сформированное пучком 10 в исходном положении, развернуто на угол , и изображение, сформированное пучком 11, развернуто на угол . Для наглядности на фиг.2,а изображения 10' и 11' показаны укрупненными по сравнению с изображением 9'.

Имеющийся разворот изображений позволяет их надежно идентифицировать, то есть установить соответствие между номером отраженного пучка и формируемым им изображением марки 2.

При повороте объекта на малые углы к, ψ относительно осей OY, OZ соответственно, а следовательно, и скрепленного с ним отражателя 3, центры изображений 10' и 11' сместятся (фиг.2) относительно плоскости XOY на расстояние а относительно ZOX - т.е величина поворота отражателя вокруг коллимационных осей определяется также, как и в прототипе (фиг.4), т.е. по выражениям

и , или =4δ.

Третья пара пучков с последовательностями отражений b, с, а, и а, с, b (пучки 12 и 13 на фиг.1) не используется, поскольку выходят за пределы углового поля регистрирующего устройства.

Таким образом, в фокальной плоскости регистрирующего устройства образуются три изображения марки 2, каждое из которых имеет уникальную ориентацию относительно собственного центра, что позволяет однозначно идентифицировать каждую из них независимо от направления поворота объекта (фиг.2).

Регистрация смещений изображений производится при помощи приемника оптического излучения 4, который преобразует облученность в фокальной плоскости регистрирующего устройства в последовательность электрических сигналов. Технологически наиболее освоенными в настоящий момент являются матричные фотоприемники на основе приборов с зарядовой связью (МФПЗС). Преимущество МФПЗС заключается в возможности жесткой геометрической привязки отдельных фоточувствительных элементов к неподвижной системе координат, определяемой регистрирующим устройством, что обеспечивает стабильность метрологических характеристик. Подключенный к выходу приемника оптического излучения 4 блок обработки производит обработку поступающей информации и вычисляет значения углов поворота объекта.

Пример конкретного исполнения.

Формирователь излучения и регистрирующее устройство выполнены единым блоком в виде автоколлиматора, снабженным светоделительным элементом в виде светоделительного куба, расположенного между объективом 1, маркой 2 и приемником оптического излучения 4. Объектив 1 автоколлиматора имеет диаметр входного зрачка Dвх=68 мм, фокусное расстояние f'=260 мм и угловое поле 2ω=12' (соответствует угловому полю АК-1). Светящаяся марка 2 состоит из источника излучения, выполненного в виде полупроводникового излучающего диода с длиной волны λ=0,95 мкм и установленной перед ним щелевой диафрагмой. Приемник оптического излучения 4 выполнен в виде КМОП-матрицы размером 2592×1944 пространственных элементов (пикселей), размером 2,775 мкм × 2,775 мкм каждый. Блок обработки выполнен в виде ЭВМ.

Уголковый отражатель 3, закрепляемый на контролируемом объекте, выполнен в виде стеклянного тетраэдра с диаметром 64 мм. Для отражателя 3, изготовленного из стекла марки К8 (n=1,5163), решение системы уравнений дает δ3=-1,2368·δ, а κ0=43°36'. Таким образом, величина Пусть величина отступления от 90° первого двухгранного угла отражателя 3 равна δ1=δ=10', второго соответственно - δ2=δ=10'. Тогда величина отступления от 90° третьего двухгранного угла δ3=-1,2368·10'=3,7104·10-3. Величина Δ=4δ=4·2,909·10-3·1,5215=0,018. Пусть плоское зеркало 5 имеет световой диаметр 85 мм. При установке отражателя 3 на расстоянии L=2000 мм, плоское зеркало 5 устанавливают на расстоянии Н=2000·0,018=36 мм оси объектива 1 автоколлиматора.

Таким образом, чувствительность к измерению угла скручивания составляет 2·Δ=2·0,018=0,036, а к коллимационным углам =4δ=0,012.

Для прототипа величина Δ отклонения пучка после отражения от отражателя 3 не может превышать половины углового поля автоколлиматора Δ=6'=1,745·10-3 рад. Тогда для тетраэдрического отражателя угол δ=4,363·10-3 рад (1,5'). Поскольку величина Δ численно равна чувствительности к измерению угла скручивания, чувствительность заявляемого устройства в превышает чувствительность прототипа для тех же параметров автоколлиматора.

Чувствительность к измерению коллимационных углов для прототипа равна . Соответственно чувствительность к измерению коллимационных углов в предлагаемой системе в раз больше, чем в прототипе при тех же параметрах автоколлиматора.

На основании вышеизложенного заявляемая совокупность признаков позволяет обеспечить повышение точности измерений за счет повышения чувствительности к углу скручивания и определения знаков коллимационных углов.

1. Устройство контроля поворота объекта, содержащее формирователь излучения, включающий объектив и расположенную в его фокальной плоскости светящуюся марку, скрепляемый с контролируемым объектом уголковый отражатель, три двугранные угла которого выполнены с заведомо заданными отступлениями от 90°, регистрирующее устройство, установленное по ходу излучения от отражателя, выполненное в виде объектива и установленного в его фокальной плоскости приемника оптического излучения, выход которого соединен с блоком обработки, отличающееся тем, что устройство дополнительно содержит плоское зеркало, центр которого расположен на расстоянии H=L·tgΔ от оптической оси объектива формирователя излучения, при этом L - длина проекции отрезка между центрами отражателя и плоского зеркала на оптическую ось, Δ - угол между нормалью к плоскому зеркалу и оптической осью формирователя излучения, равный углу отклонения от оптической оси формирователя излучения пучка лучей, отраженных от уголкового отражателя, при этом марка формирователя излучения выполнена в форме, не обладающей свойством осевой симметрии, а приемник оптического излучения выполнен в виде матричного фотоприемника.

2. Устройство по п.1, отличающееся тем, что заведомо заданные отступления от 90° двух двугранных углов между отражающими гранями имеют равные величины и одинаковые знаки, а заведомо заданное отступление от 90° третьего двугранного угла между отражающими гранями определяется из условия

где - показатель преломления тетраэдрического отражателя, равный

где - единичный орт падающего луча;
- единичный орт нормали к передней поверхности тетраэдрического отражателя;
n - показатель преломления стекла уголкового отражателя.
δ - величина заданного отступления двугранных углов, имеющих равные знаки,
при этом величину угла Δ определяют из выражения .

3. Устройство по п.1, отличающееся тем, что марка формирователя излучения выполнена в виде прямоугольника.

4. Устройство по п.1, отличающееся тем, что уголковый отражатель выполнен в виде стеклянного тетраэдра с фронтальной преломляющей гранью и тремя отражающими гранями.



 

Похожие патенты:

Изобретение относится к оптико-электронным системам и может быть использовано в углоизмерительных приборах ориентации космических аппаратов. .

Изобретение относится к области оптоэлектроники, преобразовательной техники, а именно к полупроводниковым фотоэлектрическим преобразователям углов. .

Изобретение относится к оптико-электронным системам и может быть использовано в углоизмерительных приборах, предпочтительно в звездных приборах ориентации космических аппаратов.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся оптическими средствами измерений, и может быть использовано для решения широкого круга технических задач, таких как юстировка оптико-электронных систем, сборка крупногабаритных конструкций, определение параметров жесткости валов, дистанционное измерение и дистанционная передача значения угла скручивания и др.

Изобретение относится к фотоэлектрическим измерительным устройствам для измерения углов, угловых координат и угловых перемещений, основанных на применении поляризационной оптики.

Изобретение относится к приспособлениям, к измерительным устройствам, отличающимся оптическими средствами измерения углов. .

Изобретение относится к измерительной технике и может быть использовано для высокоточного контроля двугранных углов зеркально-призменных элементов (ЗПЭ). .

Изобретение относится к оптическому приборостроению и может быть использовано для контроля и юстировки различных оптических деталей, сборок и приборов

Устройство содержит призменную систему, включающую первую пару пентапризм, содержащую первую и вторую пентапризмы, главные сечения которых расположены в одной плоскости Р, оптический клин, склеенный с первой отражающей гранью первой пентапризмы и выполненный так, что его выходная грань параллельна входной грани первой пентапризмы, причем поверхность склейки имеет светоделительное покрытие, вторую пару пентапризм, содержащую третью и четвертую пентапризмы, главные сечения которых расположены в одной плоскости Р'. Входная грань третьей пентапризмы расположена за выходной гранью оптического клина и параллельна ей. Плоскости Р и Р' расположены под углом 2φ друг к другу. Вторая и четвертая пентапризмы оптически связаны с объективом, в фокальной плоскости которого расположен координатно-чувствительный фотоприемник, выход которого связан со входом микропроцессора. Технический результат - определение углового отклонения оси лазерного пучка при использовании высокоэнергетического лазера с одновременным уменьшением экранирования сечения его пучка в условиях внешних механических воздействий, приводящих к угловым уводам призм призменной системы. 1 з.п. ф-лы, 6 ил.
Способ юстировки осуществляют путем разворота отражающих плоскостей полого трехгранного уголкового отражателя с боковым переносом для достижения угла между каждой парой из трех граней девяноста градусов. Используют установку, состоящую из коллиматора, в фокальной плоскости которого установлена светящаяся марка, и зрительной трубы, оптическая ось которой параллельна оптической оси коллиматора и удалена от оптической оси коллиматора на плечо бокового переноса. Направляют излучение от коллиматора на уголковый отражатель, установленный на подвижном основании, и наблюдают изображение светящейся марки в окуляр зрительной трубы. Разворачивают уголковый отражатель на определенный угол, измеряют уход изображения светящейся марки. Юстируют двугранные углы между отражающими гранями и добиваются неподвижности изображения светящейся марки при любых разворотах уголкового отражателя вокруг трех осей. Технический результат - упрощение способа юстировки.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся дистанционными оптическими средствами измерений, и может быть использовано при решении задач, требующих одновременного определения двух линейных и двух угловых координат объекта при постоянной дистанции до объекта. Предложено одноканальное двухкоординатное устройство измерения угловых и линейных координат объекта, работающее в большом диапазоне дистанций с высокой точностью и изменяемым диапазоном измерений. Такой технический результат достигнут нами, когда в устройстве измерения линейных и угловых координат объекта, содержащем осветитель, объектив с матричным фотоприемником, связанным с устройством обработки информации и установленным в плоскости, сопряженной с объектом, и измерительную марку, установленную на объекте, новым является то, что измерительная марка снабжена осветителем, включающим расположенные по ходу луча источник света, конденсор и рассеиватель, и двумя визирными элементами, образующими кольцевую и точечную структуры и разнесенными по оптической оси, за второй структурой по ходу луча установлен компенсатор оптического хода, при этом объектив выполнен с переменным фокусным расстоянием. 5 ил.

Способ включает фиксацию на передней поверхности зуба инструмента 1 в его торцовом сечении на расстоянии L от вершины зуба инструмента 1 прямолинейной упругой полоски 3, обеспечивающей продление поверхности переднего угла для его визуального восприятия. Инструмент 1 устанавливают ортогонально плоскости стола 8 микроскопа так, чтобы визирная линия окуляра проходила через вершину зуба и через продольную ось инструмента. Объектив микроскопа перемещают в вертикальной плоскости в направлении инструмента 1 на упомянутое расстояние L с последующим поворотом стола 8 микроскопа или окуляра до совмещения визирной линии с продольной гранью полоски. Определяют угол Ө, а затем определяют передний угол γ по следующей зависимости: γ = (360/P)·L - Ө, где: L - расстояние от вершины зуба инструмента до полоски вдоль оси инструмента, мм; Ө - угол поворота стола микроскопа или окуляра, градус; Р - осевой шаг винтовой канавки, мм. Технический результат - упрощение и снижение трудоемкости измерения переднего угла в торцовом сечении осевых режущих инструментов (сверл, зенкеров, разверток, метчиков и др.) с диаметром более 3 мм, с любым числом зубьев, в том числе менее трех, с использованием инструментального микроскопа. 1 з.п. ф-лы, 5 ил.

Способ включает фиксацию на передней поверхности зуба фрезы 2 в ее торцовом сечении на расстоянии L от торца фрезы 2 прямолинейной упругой полоски, обеспечивающей продление поверхности переднего угла для его визуального восприятия. Фрезу устанавливают ортогонально плоскости стола 1 микроскопа так, чтобы визирная линия окуляра проходила через вершину зуба на торце фрезы и продольную ось фрезы. Объектив 3 микроскопа перемещают в вертикальной плоскости в направлении фрезы на расстояние L. Поворачивают стол 1 микроскопа или окуляр до совмещения визирной линии с продольной гранью полоски. Определяют угол поворота стола микроскопа или окуляра θ, а затем определяют передний угол γ по приведенной зависимости. Технический результат - упрощение и снижение трудоемкости измерения переднего угла, обеспечение возможности измерения переднего угла у фрез с диаметром более 3 мм и с любым числом зубьев, в том числе менее трех, с использованием инструментального микроскопа. 1 з.п. ф-лы, 5 ил.

Способ реализуется с помощью устройства, содержащего поворотный столик, автоколлиматор, визирная ось которого перпендикулярна оси поворота столика, контролируемую правильную многогранную призму, ось которой соосна оси поворота столика. На неподвижном столике установлено первое угловое зеркало с углом между отражающими гранями, равным углу между смежными гранями призмы, первая грань которого перпендикулярна визирной оси автоколлиматора. Ребро, образованное отражающими гранями, параллельно оси вращения столика. Плоское съемное зеркало установлено в первом положении перпендикулярно визирной оси автоколлиматора. Устройство содержит три перископа и второе угловое зеркало с углом между гранями, равным половине рабочего центрального угла многогранной призмы. Первый перископ создает оптическую связь автоколлиматора с первыми гранями призмы и углового зеркала. Второй перископ, второе угловое зеркало и третий перископ расположены последовательно, создавая оптическую связь автоколлиматора со смежной гранью призмы и второй гранью первого углового зеркала. Плоское съемное зеркало во втором положении параллельно смежной грани призмы и второй грани первого углового зеркала и размещено между ними и третьим перископом. Технический результат - повышение надежности и точности измерений при использовании сравнительно простого устройства. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к области геодезии, в частности к высокоточным измерениям для определения критических деформаций. Предложен способ высокоточных измерений инженерных объектов сканирующими лазерными системами (ЛИС) с применением программного обеспечения управления и обработки результатов по двум координатам в реальном масштабе времени и устройство для его осуществления. Сканирующий лазерный пучок задает опорное направление в реальном масштабе времени, используя математический аппарат, наиболее адаптированный к геодезическим измерениям и позволяющий производить одновременные равноточные измерения в нескольких точках исследуемого объекта, расположенных в створе. Технический результат - сокращение временных интервалов измерений, производимых в процессе длительного и непрерывного геодезического мониторинга, обеспечивая точность измерений на протяженных трассах и их отрезках. 2 н.п. ф-лы, 4 ил.

Способ включает использование двух автоколлимационных теодолитов и многогранной зеркальной призмы, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения. Теодолиты наводят на грани многогранной призмы так, чтобы их визирные оси были на одном уровне с многогранной призмой и образовывали между собой угол 90°. При каждой j-ой установке, где j=1,2,…, n - количество граней призмы, вертикальной оси измеряют углы наклона соответствующих граней призмы при прямом и обратном направлении вращения оси. Значение углов считывают по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением. Значения координат V1j, V2j вектора возмущений вертикальной оси рассчитывают по формуле: , а значения координат B1j, B2j вектора биений - по формуле: B1,j=xjпр -xjобр, B2,j=yjпр -yjобр, где: xj - значение угла наклона j-ой грани, соответствующей первому теодолиту, и измеренное им при прямом и обратном направлении вращения оси; yj - значение угла наклона j-ой грани, соответствующей второму теодолиту, и измеренное им при прямом и обратном направлении вращения оси. Технический результат - упрощение и уменьшение времени, необходимого на расчет возмущений и биений вертикальных осей. 4 ил.

Изобретение относится к устройствам для выверки и, в частности, к устройствам, которые могут быть использованы для выверки буровых установок с обеспечением правильного азимута бурения. Устройство для лазерной выверки, предназначенное для использования с буровой установкой, имеющей удлиненную буровую штангу, и содержащее блок головки, содержащий по меньшей мере пару лазерных излучающих устройств, расположенных на нем независимо друг от друга, причем каждое из лазерных устройств выполнено с возможностью перемещения только в одной плоскости и ориентировано по существу в противоположных направлениях относительно друг друга для задания плоскости выверки, крепежные средства для прикрепления блока головки к буровой установке и блок регулируемой длины для регулирования разделяющего расстояния между блоком головки и буровой штангой. Устройство для лазерной выверки выполнено с возможностью использования для выверки по меньшей мере азимута буровой штанги относительно маркшейдерских знаков с использованием плоскости выверки. 4 н. и 21 з. п. ф-лы, 21 ил.

Изобретение относится к контрольно-измерительной технике и предназначено для измерения углов поворота объекта оптико-электронным способом

Наверх