Устройство контроля влажности


 


Владельцы патента RU 2471178:

Шапошников Владимир Викторович (RU)
Лебедев Александр Валентинович (RU)
Щербаков Виктор Николаевич (RU)
Гапонов Владимир Егорович (RU)

Изобретение относится к измерительной технике и может быть использовано в системах автоматизированного непрерывного контроля технологических процессов при эксплуатации маслонаполненных механизмов для сигнализации о критическом уровне содержания воды в энергетических маслах. Устройство содержит емкостный датчик (1), погружаемый в контролируемую среду, который состоит из двух пар коаксиальных цилиндрических электродов (2 и 3), одна из которых (2) заполнена маслом, не содержащим влагу. На первый электрод датчика (1) с генератора тестовых сигналов (5) подают прямоугольный электрический импульс. Отклики датчика (1), снимаемые со вторых (внешних) электродов, фиксируют при помощи пиковых детекторов (6 и 7), выходные сигналы которых подаются на дифференциальный усилитель (8). Выходной сигнал с дифференциального усилителя (8) подается на вход блока определения влажности (9). Этот блок (9) содержит компаратор (10), к одному из входов которого подключают источник опорного сигнала (11). Входной сигнал с блока определения влажности (9) поступает на микроконтроллерный блок (12), осуществляющий фильтрацию сигналов компаратора (10). При устойчивой генерации сигнала превышения уровня влагосодержания контролируемого масла, выходной каскад (13) переводится микроконтроллерным блоком (12) в состояние, сигнализирующее об этом. Изобретение обеспечивает расширение функциональных и эксплуатационных возможностей устройства, а именно упрощение технологии проведения измерений, повышение точности измерений, снижение вероятности влияния паразитных параметров цепей электродов на чувствительность измерительной схемы, а также возможность использования устройства в качестве сигнализатора критического уровня влагосодержания масла. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано в системах автоматизированного непрерывного контроля технологических процессов при эксплуатации маслонаполненных механизмов для сигнализации о критическом уровне содержания воды в масле.

Известно устройство для измерения влажности, описанное в патенте Российской Федерации №2377552, G01N 27/22, опубл. 10.07.2009 г., в котором применяется электроимпульсный метод измерения электрической емкости чувствительного элемента, заполненного маслом. В устройстве используется два идентичных чувствительных элемента, представляющих собой плоскопараллельные конденсаторы, погруженные в масло, в нем применяется метод измерения разности откликов чувствительных элементов на воздействие прямоугольного электрического импульса, при этом в межэлектродном пространстве чувствительных элементов предварительно создается импульсное магнитное поле.

Недостатком данного устройства является то, что оно не может быть интегрировано в автоматизированную систему непрерывного контроля технологического процесса, так как требуется разработка дополнительных интерфейсных модулей для формирования сигналов, сигнализирующих о критическом значении контролируемого параметра, и то, что при установке чувствительных элементов с источниками магнитного поля в металлические конструкции неизбежно неконтролируемое изменение параметров магнитного поля, что приведет к неконтролируемому изменению чувствительности схемы и искажению результатов измерений.

Ближайшим техническим решением, выбранным в качестве прототипа, является устройство для измерения влажности, описанное в свидетельстве на полезную модель Российской Федерации №10464, G01N 27/22, опубл. 16.07.1999 г., включающее погружаемый в контролируемую среду, емкостный датчик, блок измерительного преобразователя, содержащий управляемый таймером генератор прямоугольных импульсов, выход которого подключен к первому электроду емкостного датчика, пиковый детектор, дифференциальный усилитель, соединенный с выходом пикового детектора, и блок определения влажности.

К недостаткам данного устройства относится то, что для определения уровня влагосодержания различных масел требуется выполнение процедур калибровки, поскольку они отличаются диэлектрической проницаемостью; для повышения точности измерений необходима корректировка результатов в зависимости от температуры контролируемой среды; в составе устройства отсутствует блок формирования сигнала, сигнализирующий о критическом уровне влагосодержания; сигналы с электродов подаются при помощи эмиттерных повторителей сначала на дифференциальный усилитель, а потом на пиковый детектор, что может приводить к изменению чувствительности схемы в случае несовпадения во времени сигналов на входах дифференциального усилителя в результате влияния паразитных параметров в цепи электродов.

Задача, решаемая предлагаемым изобретением, заключается в расширении функциональных и эксплуатационных возможностей устройства, а именно в упрощении технологии проведения измерений, в повышении точности измерений, в снижении вероятности влияния паразитных параметров цепей электродов на чувствительность измерительной схемы, а также в возможности использования устройства в качестве сигнализатора критического уровня влагосодержания масла.

Технический результат заключается в исключении калибровки при изменении диэлектрической проницаемости контролируемой среды (масла) за счет измерения влагосодержания дифференциальным методом с помощью двух чувствительных элементов, заполненных маслом одного типа, при этом один чувствительный элемент заполнен маслом, находящимся в состоянии поставки (не содержащем влагу); в исключении влияния температурной зависимости за счет дифференциального метода измерения сигналов с двух чувствительных элементов, расположенных в непосредственной близости друг к другу и погруженных в контролируемую среду, что обеспечивает их термодинамическое равновесие; в изменении последовательности обработки сигналов измерительным блоком за счет другой компоновки схемы, при которой сигналы с электродов сначала подаются непосредственно на пиковые детекторы, а затем дифференциальным усилителем выделяется разность между ними; в формировании сигнала при превышении порогового значения влагосодержания, за счет применения компаратора с регулируемым порогом сравнения и микроконтроллерного блока.

Для достижения указанного технического результата устройство контроля влажности, включающее погружаемый в контролируемую среду емкостный датчик, блок измерительного преобразователя, содержащий управляемый таймером генератор прямоугольных импульсов, выход которого подключен к первому электроду емкостного датчика, пиковый детектор, дифференциальный усилитель, соединенный с выходом пикового детектора, и блок определения влажности, согласно изобретению снабжено микроконтроллерным блоком, дополнительным пиковым детектором, выходным каскадом, вход которого соединен с выходом микроконтроллерного блока, и источником опорного сигнала, при этом емкостный датчик выполнен в виде двух чувствительных элементов, один из которых заполнен маслом, не содержащим влагу, вторые электроды чувствительных элементов соединены с входами пиковых детекторов, а выход дифференциального усилителя соединен со входом блока определения влажности, оборудованного компаратором, к одному из входов которого подключен источник опорного сигнала.

Кроме того, чувствительные элементы выполнены в виде пар коаксиальных цилиндрических электродов.

Кроме того, источник опорного сигнала выполнен с возможностью регулирования.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

В процессе поиска не выявлено технических решений, содержащих признаки, сходные с отличительными признаками заявляемого устройства, что позволяет сделать вывод о соответствии его условию «изобретательский уровень».

На чертеже представлена схема устройства контроля влажности.

Устройство содержит емкостный датчик 1, состоящий из двух чувствительных элементов 2 и 3, выполненных в виде пар коаксиальных цилиндрических электродов, измерительный блок 4, который включает в себя генератор 5, пиковые детекторы 6 и 7 и дифференциальный усилитель 8, блок определения влажности 9, состоящий из компаратора 10 и источника опорного сигнала 11, микроконтроллерный блок 12 и выходной каскад 13.

Устройство работает следующим образом.

Блок измерительного преобразователя 4 с датчиком 1 погружают в контролируемую среду. Перед установкой устройства чувствительный элемент 2 заполняют маслом, не содержащим влагу (в состоянии поставки), и закрывают герметизирующей крышкой. В процессе измерения на первый электрод датчика 1, роль которого играют гальванически связанные центральные электроды чувствительных элементов 2 и 3, с генератора тестовых сигналов 5, запускаемого микроконтроллерным блоком 12, подают прямоугольный электрический импульс. Отклики датчика 1, снимаемые со вторых (внешних) электродов, фиксируют при помощи пиковых детекторов 6 и 7, выходные сигналы которых подаются на дифференциальный усилитель 8, который выделяет и усиливает разность между сигналами. Выходной сигнал с дифференциального усилителя 8 подается на вход блока определения влажности 9, содержащего компаратор 10, к одному из входов которого подключают источник опорного сигнала 11, уровень выходного сигнала которого задается пользователем в процессе наладки устройства в зависимости от требуемого порога определения влагосодержания масла. Входной сигнал с блока определения влажности 9 поступает на микроконтроллерный блок 12, осуществляющий фильтрацию сигналов компаратора 10 с целью устранения возможного влияния электромагнитных помех. При устойчивой генерации сигнала превышения порога влагосодержания контролируемого масла, выходной каскад 13 переводится блоком 12 в состояние, сигнализирующее об этом. Описанный процесс повторяется непрерывно до тех пор, пока подано питающее напряжение.

Проведенные экспериментальные исследования показали, что при использовании дифференциального метода измерений сигналов с двух чувствительных элементов, погруженных в объем масла, когда один из них заполнен тем же маслом в состоянии поставки, обеспечивается надежное определение установленного пользователем порога влагосодержания в предварительно подготовленных пробах, содержание воды в которых контролируется при помощи кулонометрического титратора. Также было установлено, что изменение температуры контролируемой среды не оказывает влияния на точность измерений. В течение всего цикла исследований не было обнаружено влияние электромагнитных помех на работу устройства, что подтверждает эффективность применяемой конструкции и схемных решений, а также использование микроконтроллерного блока, программное обеспечение которого реализует алгоритм фильтрации выходных сигналов блока определения влажности.

Таким образом, изложенные сведения свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:

устройство контроля влажности, воплощающее заявленное изобретение, при его осуществлении предназначено для непрерывного контроля порогового уровня содержания воды в энергетических маслах;

для заявленного устройства в том виде, как оно охарактеризовано в формуле на изобретение, подтверждена возможность его осуществления с помощью описанных в заявке и известных до даты приоритета средств и методов;

устройство контроля влажности, воплощенное в заявленном изобретении, при его осуществлении способно обеспечить достижение усматриваемого заявителем достигаемого технического результата.

Следовательно, заявляемое техническое решение соответствует критерию «промышленная применимость».

1. Устройство контроля влажности, включающее погружаемый в контролируемую среду емкостный датчик, блок измерительного преобразователя, содержащий управляемый таймером генератор прямоугольных импульсов, выход которого подключен к первому электроду емкостного датчика, пиковый детектор, дифференциальный усилитель, соединенный с выходом пикового детектора, и блок определения влажности, отличающееся тем, что оно снабжено микроконтроллерным блоком, дополнительным пиковым детектором, выходным каскадом, вход которого соединен с выходом микроконтроллерного блока, и источником опорного сигнала, при этом емкостный датчик выполнен в виде двух чувствительных элементов, один из которых заполнен маслом, не содержащим влагу, вторые электроды чувствительных элементов соединены с входами пиковых детекторов, а выход дифференциального усилителя соединен с входом блока определения влажности, оборудованным компаратором, к одному из входов которого подключен источник опорного сигнала.

2. Устройство по п.1, отличающееся тем, что чувствительные элементы выполнены в виде пар коаксиальных цилиндрических электродов.

3. Устройство по п.1, отличающееся тем, что источник опорного сигнала выполнен с возможностью регулирования.



 

Похожие патенты:

Изобретение относится к сельскому хозяйству и может быть использовано в агрономических целях для наблюдения за состоянием почвенного покрова. .

Изобретение относится к измерительной технике и может быть использовано для оценки качества бензина. .

Изобретение относится к технологии выполнения клеевых соединений, может использоваться при склеивании различных пород древесины и позволяет непрерывно контролировать внутренние напряжения, возникающие в процессе формирования клеевого соединения при обработке магнитным полем.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к измерительной технике и предназначено для контроля влажности воздуха и газов. .

Изобретение относится к измерительной технике, а именно к способам и устройствам для определения физических свойств веществ путем измерения электрической емкости, и может быть использовано для экспрессного определения теплофизических характеристик неметаллических материалов, например строительных.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, для регистрации и измерения содержания оксида углерода и других газов. .

Изобретение относится к электроизмерительной технике и может быть использовано для измерения влажности различных сыпучих материалов, в том числе зерна и почвы. .

Изобретение относится к оборудованию для подводной добычи нефти

Изобретение относится к области нефтехимической промышленности и может быть использовано в промысловых и научно-исследовательских лабораториях для разработки технологий увеличения нефтеотдачи пластов и при отсчете запасов нефти, оперативном контроле за разработкой нефтяных месторождений

Изобретение относится к текстильной промышленности и представляет собой емкостный способ определения неравномерности линейной плотности продуктов прядения. Образец пропускают между двумя пластинами конденсатора, измеряют реактивное сопротивление конденсатора, определяют изменение емкости, которое пропорционально изменениям диэлектрической проницаемости образца и регистрируют их как коэффициент вариации по линейной плотности или коэффициент неровноты по линейной плотности. Измерение реактивного сопротивления конденсатора производят в интервале частот от 1 кГц до 10 мГц, рассчитывают массу влаги в образце, а затем массу «сухого» материала в образце. На основании полученных значений массы сухого продукта производят расчет показателей неравномерности по линейной плотности продукта прядения. Способ позволяет ускорить процесс измерения показателей неравномерности по линейной плотности продуктов прядения путем компенсации влияния влажности материала на результат измерения. 3 табл., 1 ил., 1 пр.
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях. Способ неразрущающего контроля теплотехнических качеств ограждающих конструкций зданий заключается в том, что измеряют фактические значения теплопроводности внутреннего и наружного поверхностных слоев конструкции. Затем вычисляют значения сопротивлений теплопередаче этих слоев по формулам: Rв=δв/λв и Rн=δн/λн, где Rв и Rн - значения сопротивлений теплопередаче внутреннего и наружного поверхностных слоев конструкции, соответственно; δв и δн - толщина внутреннего и наружного поверхностных слоев, соответственно; λв и λн - теплопроводность внутреннего и наружного поверхностных слоев, соответственно. Далее вычисляют значение сопротивления теплопередаче теплоизоляционного слоя по формуле: Rт=Rк-1/αв-1/αн-Rв-Rн, где Rт - сопротивление теплопередаче теплоизоляционного слоя; Rk - общее сопротивление теплопередаче конструкции; αв, αн - коэффициенты теплоотдачи внутренней и наружной поверхностей конструкции, соответственно. Затем вычисляют фактическое значение теплопроводности материала теплоизоляционного слоя конструкции по формуле: λт,=δт/Rт, где λт - теплопроводность материала; δт - толщина слоя. После чего определяют фактическое значение влажности материала теплоизоляционного слоя по формуле: Wт=(λт-λ0)/Δλw, где Wt - влажность материала; λ0 теплопроводность материала в сухом состоянии; Δλw - приращение теплопроводности материала на 1% влажности. Техническим результатом изобретения является определение теплофизических характеристик теплоизоляционного слоя многослойных строительных конструкций без нарушения их целостности. 1 з.п. ф-лы.

Изобретение относится к области нефтехимии. Способ управления компаундированием товарных бензинов включает измерение диэлектрической проницаемости и удельной электропроводности, а также температуры и давления компонентов товарного бензина и готового товарного бензина на различных стадиях технологического процесса, дальнейшее приведение измеренных электрофизических параметров компонентов и товарного бензина к единым условиям с контролем значений октанового числа и выработкой рекомендаций по внесению изменений в технологический процесс. Также предложена система управления компаундированием товарных бензинов, которая включает блоки первичных преобразователей, каждый из которых содержит первичный преобразователь емкостного типа, первичные преобразователи давления и температуры, вторичные преобразователи, соединенные с первичными преобразователями, локальное автоматизированное рабочее место по сбору, обработке и хранению информации и реализует все основные функции описанного способа, а также дополнительные и сервисные. Предложенные согласно изобретению способ и система управления компаундированием товарных бензинов отличаются высокой точностью и обеспечивают возможность принятия оперативных решений по корректировке технологического процесса. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технологии строительства и может быть использовано для определения количества цемента в грунтоцементном материале при создании строительных конструкций посредством струйной цементации. Способ определения количества цемента в грунтоцементном материале конструкции при создании строительных конструкций посредством струйной цементации заключается в добавлении в закачиваемый в скважину цементный раствор порошкообразного индикатора. В качестве такого порошкообразного индикатора применяют порошковый графит, тонкость помола которого не ниже тонкости помола цемента. Весовое отношение порошка графита составляет 1-10% веса цемента. При осуществлении способа первоначально замеряют электропроводность закачиваемого цементного раствора, затем замеряют электропроводность выделяемой из скважины грунтоцементной пульпы, а количество цемента в грунтоцементном материале конструкции определяют как разность между количеством цемента в цементном растворе и количеством цемента в пульпе. Количество цемента в пульпе рассчитывают по формуле: где mсп - количество цемента в пульпе; mс - количество цемента в цементном растворе; λn - величина электропроводности пульпы; λс - величина электропроводности цементного раствора.

Изобретение может быть использовано в химической, нефтехимической, нефтегазовой, пищевой и других отраслях промышленности. Анализатор газожидкостного потока содержит измерительный участок 1 и соединенные с ним газосборную камеру 2 и отстойник 3, основной измерительный датчик 5, дополнительные измерительные датчики 4, блок сравнения 6, подключенный к регистратору 7. Основной измерительный датчик 5 установлен в байпасной линии 9 измерительного участка, количество дополнительных измерительных датчиков 4 равно числу реперных точек n, при этом каждый дополнительный датчик 4 и основной датчик 5 состоит из емкостей, количество которых на один меньше числа реперных точек (n-1) и поверх которых установлены обкладки конденсаторов, причем при нулевой реперной точке, соответствующей нулевому газосодержанию, все емкости заполнены жидкостью, при последней реперной точке, соответствующей 100%-ному газосодержанию, все емкости заполнены газом, а при промежуточных реперных точках емкости заполнены жидкостью или газом, при этом количество газовых емкостей равно порядковому номеру реперной точки, а количество жидкостных емкостей равно (n-1-N), где N - порядковый номер реперной точки, начиная с 0-й, а при нулевой реперной точке, соответствующей 100%-ому газосодержанию, все емкости заполнены газом, при последней реперной точке, соответствующей нулевому газосодержанию, все емкости заполнены жидкостью, а при промежуточных реперных точках емкости заполнены жидкостью или газом, при этом количество жидкостных емкостей равно порядковому номеру реперной точки, а количество газовых емкостей равно (n-1-N), где N - порядковый номер реперной точки, начиная с 0-й, входы газовых емкостей дополнительных измерительных датчиков 4 соединены с выходами газосборной камеры 2, а входы жидкостных емкостей - с выходами отстойника 3, а выходы емкостей снабжены выпускными кранами 8, кроме того электрические выходы основного 5 и дополнительных 4 датчиков подключены ко входам блока сравнения 6. Дополнительные измерительные датчики 4 могут составлять отдельный блок 10. Технический результат, на достижение которого направлено заявляемое изобретение, заключается в повышении точности измерения.1 з.п. ф-лы, 1 ил.

Изобретение относится к методу определения доли адсорбированного вещества, которое содержится в формованном теле, грануляте или порошке из цеолита, цеолитного соединения или силикагеля в качестве адсорбирующего материала, а также к соответствующему устройству и применению устройства для определения или мониторинга степени насыщения адсорбирующего материала, заложенного на хранение в емкость. Изобретение заключается в том, что в случае, когда адсорбирующий материал представлен в форме формованного тела, два электрода с удалением друг от друга размещаются на поверхности формованного тела и/или прочно вставляются в формованное тело, а в случае, когда адсорбирующий материал представлен в форме порошка или гранулята, соответствующее формованное тело из такого же материала и на длительное время вводится в порошок или гранулят, при этом электроды нагружаются переменным током, в результате чего определяется электрическая характеристика и исходя из электрической характеристики определяется степень насыщения адсорбирующего материала. Изобретение обеспечивает эффективное определение степени насыщения адсорбирующего материала. 4 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к области измерения параметров жидкостей, в частности электрической проводимости в жидких средах, и может быть использовано непосредственно в морской воде. Бесконтактный датчик электрической проводимости жидких сред содержит чувствительный элемент, включенный в измерительную цепь, и преобразователь, при этом для снижения погрешности измерений чувствительный элемент с напыленными электродами, выполненный на единой подложке из титаната бария, и входящий в измерительную цепь, подключен к преобразователю, причем схема преобразователя содержит функциональные узлы со стабильными характеристиками для снижения погрешности, а жидкость, в которой производятся измерения, имеет непосредственный контакт с непокрытой защитным составом поверхностью подложки из титаната бария. 3 ил.
Наверх