Способ получения высокотемпературного сверхпроводника в системе алюминий - оксид алюминия


 


Владельцы патента RU 2471269:

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) (RU)

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами. Способ включает окисление поверхности металлического алюминия в реакторе в потоке осушенного кислорода со скоростью 10 мл/мин при температуре 650°С в течение 1 часа и последующую выдержку полученного алюминия с поверхностным оксидом алюминия при температуре 700°С в ампуле в вакууме 5×10-4 Торр в течение 3 минут. Задача изобретения - получение сверхпроводника в системе алюминий - оксид алюминия с высокой температурой перехода в сверхпроводящее состояние при одновременном повышении воспроизводимости результатов синтеза. 1 ил., 1 пр.

 

Изобретение относится к области технологии получения высокотемпературных сверхпроводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

В практике физических исследований известны высокотемпературные сверхпроводники, полученные в различных системах металл - оксид металла. Хотя имеются физические предпосылки к обнаружению таких сверхпроводников и в системе алюминий - оксид алюминия, однако в научной литературе сведений об исследованиях этой системы обнаружить не удалось. До сих пор не ясно, возможно ли вообще получение высокотемпературных сверхпроводников в этой системе.

Из уровня техники известен способ получения сверхпроводника оксида индия с пониженным содержанием кислорода по сравнению со стехиометрическим составом (In2Oх). Образцы In2Oх получали выдержкой In2O3 в вакууме или инертной атмосфере при температуре 90-100°С в течение 3-4 часов. Температура перехода в сверхпроводящее состояние составляла около 1К [V.F.Gantmakher et al., "Superconductivity and negative magnetoresistance in amorphous In2Oх films", Pisma v GhETF, 1995, v.61, N7, pp.593-598]. Недостатком соединений, полученных с помощью использованного метода, является низкая температура перехода в сверхпроводящее состояние. Известен способ получения сверхпроводника в системе висмут - оксид висмута [М. Tian et al., "Superconductivity and quantum oscillations in crystalline Bi nanowire", Nano Letters, 2009, v.9, N9, pp.3196-3202]. По этому способу сначала получали висмутовую проволоку диаметром 72 нм, поверхность которой окисляли на воздухе при комнатной температуре. Переход в сверхпроводящее состояние обнаружен при температуре 1,3 К, что является основным недостатком этого способа, поскольку переход данного объекта в сверхпроводящее состояние происходит при температуре ниже температуры жидкого гелия (4,2 К). Кроме того, процесс окисления образца таких малых размеров практически неуправляем и зависит от множества факторов - объема образца, времени выдержки, температуры окисления, влажности воздуха и др.

Задача изобретения - получение сверхпроводника в системе алюминий - оксид алюминия с высокой температурой перехода в сверхпроводящее состояние при одновременном повышении воспроизводимости результатов синтеза.

Решение поставленной задачи достигается тем, что используется способ получения высокотемпературного сверхпроводника в системе алюминий - оксид алюминия, включающий окисление поверхности образца металлического алюминия в реакторе в потоке осушенного кислорода со скоростью 10 мл/мин при температуре 650°С в течение 1 часа, выдержку полученного образца алюминия с поверхностным слоем оксида алюминия при температуре 700°С в ампуле в вакууме 5×10-4 Торр в течение 3 мин и охлаждение до комнатной температуры.

В предлагаемом способе реализуется идея, состоящая в окислении части образца металлического алюминия в атмосфере кислорода с последующей выдержкой образца металлического алюминия, поверхность которого покрыта пленкой оксида алюминия, в вакууме при температуре, которая выше температуры плавления алюминия 660°С. Благодаря реализации этой идеи удается получить температуру сверхпроводящего перехода, равную 45 К.

Способ получения высокотемпературного сверхпроводника осуществляется следующим образом. Образец металлического алюминия помещают в кварцевый трубчатый реактор, через который пропускают осушенный от следов влаги кислород со скоростью 10 мл/мин. Окисление образца металлического алюминия ведут при температуре 650°С в течение 1 часа. При этом происходит окисление поверхности металлического алюминия на глубину до 10 мкм. Затем образец алюминия с поверхностным оксидом алюминия извлекают из реактора и помещают в ампулу, которую откачивают до остаточного давления 5×10-4 Торр. Ампулу помещают в печь, нагретую до температуры 700°С, т.е. до температуры, которая выше температуры плавления металлического алюминия 660°С. Образец отжигают в печи в течение 3 мин, охлаждают и проводят измерение магнитной восприимчивости в переменном магнитном поле с целью обнаружения сверхпроводящего перехода.

Пример реализации способа.

В качестве исходного материала использовали металлический алюминий чистотой 99,99%. Образец алюминия, имеющий форму сплюснутого шара диаметром ~3 мм, помещали в реактор, через который пропускали кислород со скоростью 10 мл/мин, осушенный от следов влаги с целью предотвращения образования гидрооксида алюминия при окислении образца металлического алюминия. Окисление проводили при температуре 650°С в течение 1 часа. Рентгенофазовый анализ поверхностного слоя образца алюминия выявил наличие только одного оксида алюминия, а именно Al2О3. Образец алюминия с поверхностным оксидом алюминия извлекали из реактора и помещали в ампулу, которую вакуумировали до остаточного давления 5×10-4 Торр. Ампулу помещали в печь, нагретую до температуры 700°С, превышающую температуру плавления металлического алюминия 660°С. Образец алюминия с поверхностным оксидом алюминия выдерживали при этой температуре в течение 3 минут, после чего ампулу с образцом извлекали из печи, охлаждали до комнатной температуры и проводили измерение магнитной восприимчивости в переменном магнитном поле. Результаты измерения динамической магнитной восприимчивости образца алюминий - оксид алюминия показали (фиг.1), что переход полученного образца в сверхпроводящее состояние происходит при 45 К.

Способ получения высокотемпературного сверхпроводника в системе алюминий - оксид алюминия, включающий окисление поверхности образца металлического алюминия в реакторе в потоке осушенного кислорода со скоростью 10 мл/мин при температуре 650°С в течение 1 ч, выдержку полученного образца алюминия с поверхностным оксидом алюминия при температуре 700°С в ампуле под вакуумом 5·10-4 Торр в течение 3 мин и охлаждение до комнатной температуры.



 

Похожие патенты:

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области электротехники и может быть использовано в качестве сверхпроводящего материала при изготовлении сверхпроводящих магнитных систем различного назначения для генерации постоянных магнитных полей, например, в термоядерных реакторах для удержания плазмы, ускорителях элементарных частиц, накопителях энергии и других устройствах.

Изобретение относится к области электротехники и может быть использовано в качестве сверхпроводящего материала при изготовлении сверхпроводящих магнитных систем различного назначения для генерации постоянных магнитных полей, например, в термоядерных реакторах для удержания плазмы, ускорителях элементарных частиц, накопителях энергии и других устройствах.

Изобретение относится к области высокотемпературной сверхпроводимости. .

Изобретение относится к области электроники и может быть использовано в различных устройствах для экранирования объема от магнитного поля. .

Изобретение относится к области высокотемпературной сверхпроводимости (ВТСП) и, в частности, к способам производства высокотемпературных сверхпроводящих пленок и кабеля плазмохимическим осаждением из газовой фазы и может быть использовано в электроэнергетике, радиотехнике, электронной технике, системах связи и т.

Изобретение относится к области нанесения покрытий и может быть использовано в машиностроении. .

Изобретение относится к области нанесения покрытий, в том числе сверхпроводящих, и может быть использовано в машиностроении. .

Изобретение относится к магнитометрической технике космических аппаратов (КА) и других объектов и касается устройств для экранирования магнитометров от внутренних магнитных полей объектов, где установлены магнитометры.

Изобретение относится к высокотемпературным сверхпроводникам. .

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области нанесения каталитических оксидных покрытий и может быть использовано при изготовлении электродных материалов для комплексной очистки воды и стоков, для производства хлора и хлорсодержащих соединений.
Изобретение относится к технологии нанесения защитных покрытий на изделия из циркония и его сплавов. .

Изобретение относится к химико-термической обработке металлов и сплавов и к получению термостойких, защитных покрытий от различных видов коррозии на поверхности железа и сталей и может быть использовано в машиностроительной, авиационной, металлургической, химической и других отраслях промышленности.

Изобретение относится к металлургии, в частности к химико-термической обработке химического оборудования паровых котлов высокого давления, деталей газовых турбин и реактивных двигателей в самолетостроении, и может применяться для защиты сплавов от коррозии, особенно при их использовании при высоких температурах в кислородсодержащей среде и продуктах сгорания топлива, содержащих серу.
Изобретение относится к химикотермической обработке деталей из порошковых материалов и может быть использовано для азотирования изделий, работающих в условиях интенсивного трения и динамических нагрузок.

Изобретение относится к области теплотехники, более конкретно - к технологии изготовления тепловых труб для нужд промьшшенной энергетики, радиотехники, судостроения, космической техники.

Изобретение относится к области металлургии, а именно к разработке способов повышения характеристик усталостной долговечности конструкционных металлов на основе преобразования энергетической структуры материалов как на стадии производства сплавов и полуфабрикатов, так и в эксплуатации.
Наверх