Жаропрочный и жаростойкий титановый сплав


 


Владельцы патента RU 2471879:

Общество с ограниченной ответственностью "КОММЕТПРОМ" (ООО "КОММЕТПРОМ" "COMMETPROM") (RU)

Изобретение относится к области металлургии титановых сплавов и может быть использовано для изготовления деталей узлов ракетных двигателей, работающих в условиях высоких нагрузок при температурах до 800°С, в том числе длительное время. Жаропрочный и жаростойкий титановый сплав, содержащий, мас.%: алюминий 6,0-7,5, цирконий 3,0-5,0, вольфрам 6,0-7,5, гафний 2,5-4,0, тантал 2,5-4,0, титан - остальное. Технический результат заключается в улучшении весовых характеристик изделий, в которых применяется заявляемый сплав, в обеспечении надежности работы изделий при температурах до 800°С в течение длительного времени, обеспечении высокой прочности и сопротивления ползучести при отсутствии охрупчивания в процессе работы. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области металлургии титановых сплавов и может быть использовано для изготовления деталей узлов ракетных двигателей, работающих в условиях высоких нагрузок при температурах до 800°С, в том числе длительное время.

При использовании сплавов в указанных конструкциях следует учитывать следующие обязательные требования:

- сплавы должны обладать достаточно стабильным фазовым составом, исключающим возможность охрупчивания в процессе длительного нагружения и обеспечивать высокую прочность и сопротивление ползучести при рабочих температурах;

- сплавы должны обладать высокой жаростойкостью, обеспечивающей исключение проникающего окисления в процессе долговременной эксплуатации, при рабочих температурах.

Из уровня техники известен деформированный жаропрочный сертифицированный титановый сплав ВТ18У (Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. - М.: ВИЛС-МАТИ, 2009 г., с.66, 74 [1]), применяемый в авиационной промышленности для лопаток, дисков компрессоров двигателей, имеющий следующий химический состав, мас.%:

Алюминий 6,2-7,3;
Молибден 0,4-1,0;
Цирконий 3,5-4,5;
Ниобий 0,5-1,0;
Кремний 0,05-0,2;
Олово 2,0-3,0;
Титан остальное

Однако сплав на основе α-фазы (псевдо α-сплав) работоспособен до температуры 600°С и кратковременно до 650°С. Существенным недостатком сплава является его термическая нестабильность в процессе длительной эксплуатации; довольно низкая технологичность при горячей деформации из-за достаточно высокого содержания алюминия в сочетании с оловом и низкая жаростойкость: сплав интенсивно окисляется при нагреве выше 600°С.

Известен титановый сплав (патент RU 2405849 C1, C22C 14/00, 10.12.2010 [2]), имеющий следующий химический состав, масс.%:

Алюминий 10,5-12,5;
Ниобий 38,0-42,0;
Молибден 0,3-0,6;
Цирконий 1,5-2,5;
Кремний 0,1-0,25;
Вольфрам 0,5-1,0;
Тантал 0,7-1,5;
Углерод 0,03-0,08;
Титан остальное

Исходя из наличия в сплаве большого количества алюминия, его следует отнести к двухфазным α+α2 (Ti3Al)-сплавам с небольшим содержанием дополнительно β-фазы (из-за высокого содержания β-стабилизаторов Nb, Mo, Та, W). Это обстоятельство позволяет утверждать, что сплав не может быть термически стабильным по фазовому составу в процессе окисления при высоких температурах и будет охрупчиваться. Другим недостатком сплава является низкая технологическая пластичность при горячей деформации, что обуславливает возможность использования сплава только в литом состоянии или возможно в виде гранул с последующим газостатированием, что экономически представляется невыгодным. И, наконец, сплав является недостаточно жаростойким: интенсивно окисляется при температурах выше 700°С.

Наиболее близким аналогом (прототипом) является жаропрочный титановый сплав (патент RU 2396366 C1, C22C 14/00, 10.08.2010, [3]) характеризующийся следующим химическим составом, мас.%:

Алюминий 5,0-7,5;
Цирконий 3,0-5,0;
Вольфрам 5,0-7,5;
Гафний 0,005-0,2;
Титан остальное

Сплав использовался в турбонасосных агрегатах жидкостных ракетных двигателей в виде роторов, работающих кратковременно при температурах 750-800°С. Недостатками указанного сплава являются невозможность его использования при температуре 800°С длительное время и значительное окисление при температуре выше 780°С.

Задачей предлагаемого изобретения является создание технологичного высокожаропрочного и жаростойкого титанового сплава, работающего при температурах до 800°С при длительном нагружении.

Технический результат - улучшение весовых характеристик сплава, обеспечение надежности работы титановых деталей - изделий при температурах до 800°С в течение длительного времени, обеспечение высокой прочности и сопротивления ползучести при отсутствии охрупчивания в процессе работы.

Поставленная задача достигается тем, что жаропрочный и жаростойкий титановый сплав, содержащий алюминий, цирконий, вольфрам, гафний, титан, дополнительно делегирован танталом при следующем соотношении компонентов, мас.%:

Алюминий 6,0-7,5;
Цирконий 3,0-5,0;
Вольфрам 6,0-7,5;
Гафний 2,5-4,0;
Тантал 2,5-4,0;
Титан остальное

Данное увеличение содержания гафния и введение тантала в сплав позволяет повысить жаропрочность сплава за счет того, что оба эти элемента значительно более тугоплавки, чем титан, и, следовательно, имеют более высокий уровень межатомных связей, что позволит снизить диффузионную подвижность атомов при высоких температурах. Одновременно указанные количества гафния и тантала должны заметно повысить сопротивление окислению титанового сплава при температурах эксплуатации. С той же целью повышены нижние пределы содержания в сплаве алюминия и вольфрама до 6,0% мас.

Следует также отметить, что гафний и тантал, являясь по отношению к титану нейтральным упрочнителем и β-изоморфным элементом соответственно должны стабилизировать фазовое постоянство сплава и повысить тем самым его технологическую пластичность как при комнатой, так и при повышенных температурах, что очень важно для титановых сплавов с высоким содержанием алюминия.

Цирконий представляет собой существенный компонент титанового сплава по настоящему изобретению, и в этом титановом сплаве содержится в количестве 3,0-5,0% по массе по той причине, что когда его содержание составляет менее чем 3,0% по массе, то нельзя получить удовлетворительный эффект подавления поглощения водорода, а когда его содержание составляет более чем 5,0% по массе, то может ухудшиться такая характеристика, как легковесность (низкая плотность).

По номенклатуре и содержанию легирующих элементов предлагаемый сплав следует отнести к псевдо α-сплавам титана мартенситного типа (небольшое количество (β-фазы).

Сплав может выплавляться по общепринятой для серийных титановых сплавов технологии с использованием лигатур и чистых легирующих элементов методом тройного переплава в вакуумно-дуговых печах, в том числе и гарнисажных.

Для экспериментальной проверки заявляемого состава методом тройного переплава в вакуумно-дуговой печи были выплавлены несколько композиций сплава в виде слитков, из которых свободной ковкой были изготовлены прутки ⌀16 мм, прошедшие затем отжиг при температуре 800°С в течение 1 часа с последующим охлаждением на воздухе.

Из прутков были изготовлены образцы для механических испытаний при комнатной и повышенной температурах, а также для оценки жаростойкости на дериватографе по максимальной температуре, до которой не наблюдалось окисления металла (по привесу).

В таблице 1 представлены результаты проведенных испытаний на растяжение, ударный изгиб, длительную прочность, ползучесть и жаростойкость разработанной композиции, с различным уровнем легирования, в том числе более низким и более высоким, чем в заявленном. Для сравнения приведены свойства сплава-прототипа.

Из таблицы 1 следует, что жаропрочный и жаростойкий сплав предлагаемого состава (3-5) заметно превосходит известный титановый сплав (прототип) по уровню прочностных и жаропрочных характеристик при комнатной и повышенной температурах. Максимальная температура нагрева без окисления 860-920°С. Одновременно сплав отличается достаточно высокой пластичностью и вязкостью, что гарантирует успешную его работоспособность в высоконагруженных конструкциях.

Кроме этого, основываясь на опыте использования в конструкциях титановых сплавов подобного фазового состава и уровня легирования, можно заключить, что заявляемый титановый сплав может свариваться, что ставит его в ряд технологичных титановых сплавов широкого применения.

Результаты проведенных испытаний сплавов.

Таблица 1
№ п/п Композиция сплава Температура испытаний
20°C 800°С Максимальная температура нагрева без окисления, °С
σ0,2, МПа σв,
МПа
δ,
%
ψ,
%
KCU, Дж/см2 σв, МПа σ2, МПа σ2, E<1% МПа σ100, МПа σ100, E<1% МПа
1 2 3 4 5 6 7 8 9 10 11 12 13
1 Прототип 1078-1226 1128-1324 6-16 11-36 25-31 343-412 176-216 137-187 - - 800-861
2 Ti, 5,5 Al, 2,5 Zr, 5,5 W, 2,4 Hf, 2,3 Ta 1105 1178 17 32 36 371 194 159 - - 845
3 Ti, 6,2 Al, 3,5 Zr, 6,1 W, 2,9 Hf, 2,8 Ta 1159 1260 16 32 32 399 234 184 198 157 861
4 Ti, 6,5 Al, 4,2 Zr, 6,7 W, 3,5 Hf, 3,3 Ta 1180 1395 8,5 30 31 432 260 210 228 200 894
5 Ti, 7,1 Al, 4,8 Zr, 7,2 W, 3,8 Hf, 3,9 Ta 1252 1400 7,5 12 28 468 298 244 256 220 918
6 Ti, 7,7 Al, 5,5 Zr, 7,8 W, 4,5 Hf, 4,2 Ta 1347 1443 3,8 7 16 495 318 274 281 248 948

Из таблицы видно, что предлагаемый сплав заметно превосходит известные титановые сплавы по уровню прочности и жаропрочности при температуре до 800°С. Одновременно сплав обеспечивает достаточно высокий уровень пластических и вязких свойств, что обуславливает его надежную работу в высоконагруженных конструкциях.

Использование заявленного технического решения позволит:

- снизить весовые характеристики узлов изделий, работающий при температурах ≥800°С, в 1,5-1,8 раза за счет замены высоконагруженных деталей из жаропрочных никелевых сплавов;

- обеспечить повышение надежности работы титановых изделий при температуре ≥800°С за счет исключения процесса проникающего окисления металла;

- оптимизировать технологию изготовления деталей и узлов, в том числе сварных, за счет возможности термической обработки на воздухе, исключив вакуумное и с защитной атмосферой термическое оборудование.

Таким образом, данное изобретение обеспечивает улучшение весовых характеристик за счет замены высоконагруженных деталей из жаропрочных никелевых сплавов, повышение прочности и сопротивление ползучести при отсутствии охрупчивания в процессе работы при повышенных температурах до 800°С. Кроме того, при реализации предлагаемого изобретения обеспечивается стабильная высокая жаростойкость и жаростойкость при повышенных температурах.

1. Жаропрочный и жаростойкий титановый сплав, содержащий алюминий, цирконий, вольфрам, гафний, титан, отличающийся тем, что он дополнительно содержит тантал при следующем соотношении компонентов, мас.%:

Алюминий 6,0-7,5
Цирконий 3,0-5,0
Вольфрам 6,0-7,5
Гафний 2,5-4,0
Тантал 2,5-4,0
Титан Остальное

2. Жаропрочный и жаростойкий титановый сплав по п.1, отличающийся тем, что получен методом тройного вакуумно-дугового переплава.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности, сплавам на основе титаналюминидов, предпочтительно на основе (TiAl), полученных порошковой или пирометаллургией.
Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, и может быть использовано в конструкциях, работающих при температурах до 350°С, например для силовых деталей корпуса и лопаток вентилятора и компрессора низкого давления.

Изобретение относится к способу изготовления композитного материала из сплавов на основе никелида титана. .

Изобретение относится к области металлургии, в частности к титановым сплавам с высокой коррозионной стойкостью. .

Изобретение относится к области металлургии, в частности к титановой пластине с превосходной обрабатываемостью. .
Изобретение относится к области металлургии, а именно к получению слитка псевдо -титановых сплавов. .
Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. .
Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. .

Изобретение относится к медицинской технике. .

Изобретение относится к области металлургии, в частности к титановым сплавам, пригодным для работы в неокисляющейся среде. .
Изобретение относится к области металлургии титановых сплавов и может быть использовано для изготовления деталей узлов ракетных двигателей, работающих в условиях высоких нагрузок при температурах до 800°С, в том числе длительное время
Изобретение относится к области машиностроения, в частности к деталям рабочего колеса, которые используются в изделиях топливной системы жидкостных ракетных двигателей
Изобретение относится к области металлургии и может быть использовано для изготовления полуфабрикатов и изделий из бета-титановых сплавов путем термомеханической обработки, сопровождающейся изменением свойств материала
Изобретение относится к металлургии сплавов на основе титана, используемых в медицине для изготовления деталей эндопротезов и имплантатов, предназначенных для применения в ортопедии, стоматологии и челюстно-лицевой хирургии
Изобретение относится к области металлургии, а именно к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности

Изобретение относится к цветной металлургии, а именно к производству титановых сплавов, и может быть использовано в конструкциях, работающих при температурах до 650°С, например для деталей корпуса и статорных лопаток компрессора высокого давления газотурбинных двигателей
Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии

Изобретение относится к области металлургии, а именно к термомеханическим исполнительным механизмам, предназначенным для преобразования тепловой энергии в механическую

Изобретение относится к области металлургии, в частности к листам из чистого титана, которые могут быть использованы для изготовления пластин теплообменников

Изобретение относится к области спецэлектрометаллургии и может быть использовано при вакуумно-дуговом переплаве базового -TiAl-сплава, который затвердевает через -фазу
Наверх