Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении. Проводят насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости лопатки порошковой смесью на основе порошка углерода размером 5-60 мкм, нагрев и выдержку лопатки с заполненной внутренней полостью. Насыщение внутренней полости лопатки проводят со степенью насыщения от 5 до 20 г/м2 при температуре 900-1050°С в течение 1-6 часов из порошковой смеси, дополнительно содержащей порошок хрома размером 20-80 мкм в количестве 15-38 мас.%, порошок электрокорунда в количестве 1-50 мас.%, активатор в количестве 1-2 мас.%. Затем удаляют порошковую смесь и наносят диффузионное алюминидное покрытие со степенью насыщения от 15 до 30 г/м2. Затем проводят вакуумный отжиг лопаток при рабочей температуре внутренней полости лопатки в течение 3-6 ч. Обеспечивается защита от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля для теплонагруженных ГТД и повышается жаростойкость лопаток при рабочей температуре до 1020°С. 2 з.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области металлургии, а именно к способам нанесения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля.

Известен способ нанесения покрытия для защиты поверхности внутренней полости охлаждаемой лопатки турбины из жаропрочного сплава от высокотемпературного окисления, включающий подготовку порошковой смеси, заполнение внутренней полости лопатки порошковой смесью, нагрев и выдержку лопатки при температуре формирования на поверхности лопатки диффузионного алюминидного или хромоалюминидного покрытия, удаление порошковой смеси из внутренней полости лопатки (пат. США №№7094445, 5807428).

Известный способ позволяет сформировать на внутренней поверхности лопатки диффузионный алюминидный или хромоалюминидный слой, обеспечивающий длительную защиту этой поверхности для лопаток из жаропрочных сплавов с карбидным упрочнением.

Известен также способ нанесения покрытия для защиты от высокотемпературного окисления внутренней полости охлаждаемой лопатки турбины из жаропрочного сплава, включающий подготовку поверхности внутренней полости лопатки под покрытие, подготовку порошковой смеси, нагрев порошковой смеси и лопатки до температуры обработки и выдержку при этой температуре и принудительную циркуляцию газовой среды от источника насыщающего элемента из порошковой смеси к наружным и внутренним поверхностям деталей с периодическим изменением скорости потока (патент РФ №1238597; Лесников В.П., Кузнецов В.П. Технология получения газоциркуляционных защитных покрытий. ПТ №3, 2000 г., с.26-30).

Способ позволяет сформировать на внутренней и на внешней поверхности лопатки диффузионный алюминидный или хромоалюминидный слой (алюминидное покрытие), обеспечивающий защиту лопатки из жаропрочного сплава на основе никеля с карбидным упрочнением.

Известные способы имеют общий недостаток. Их нельзя использовать для защиты внутренней полости лопаток, выполненных из современных безуглеродистых жаропрочных сплавов. Сформированный на этих сплавах диффузионный слой не имеет переходной зоны, состоящей преимущественно из карбидов тугоплавких элементов сплава. Переходная зона диффузионного алюминидного покрытия образуется на углеродосодержащих жаропрочных сплавов. Отсутствие переходной зоны у диффузионного покрытия, препятствующей диффузии алюминия и хрома из покрытия в сплав, в процессе работы лопатки приводит к быстрому снижению концентрации легирующих элементов в покрытии за счет их диффузии в поверхностный слой материала лопатки. При этом из-за диффузии в поверхностном слое материала лопатки на большую глубину (намного больше толщины покрытия) образуется зона, состоящая из хрупких, топологически плотно упакованных фаз (ГПУ-фаз), которые снижают прочностные характеристики безуглеродистого жаропрочного сплава (длительную жаропрочность, предел усталости, термостойкость). Одновременно с этим, вследствие диффузии легирующих элементов покрытия в сплав, резко снижается жаростойкость покрытия. Таким образом, использование известных способов для защиты поверхности внутренней полости лопаток турбин из современных безуглеродистых жаропрочных сплавов путем их порошкового или газоциркуляционного алитирования или хромоалитирования не обеспечивает требуемый ресурс покрытия и может быть использовано только при очень ограниченном времени работы лопатки (не более 100 ч). Отметим, что ресурс современных лопаток турбины составляет 5·103-104 ч и более.

Наиболее близким аналогом, взятым за прототип, является способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля, включающий насыщение поверхности внутренней полости лопатки углеродом со степенью насыщения от 1,5 до 8 г/м2 путем заполнения внутренней полости лопатки порошком углерода размером 5-60 мкм или газовой средой, нагрева и выдержки лопатки с заполненной внутренней полостью и последующее нанесение диффузионного алюминидного покрытия со степенью насыщения от 15 до 60 г/м2 (патент РФ №2349678).

Недостатком способа является недостаточная жаростойкость лопаток при рабочей температуре до 1020°С.

Технической задачей изобретения является создание способа нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля для теплонагруженных ГТД, обеспечивающего повышение жаростойкости лопаток при рабочей температуре до 1020°С.

Для достижения поставленной технической задачи предложен способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля, включающий насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости лопатки порошковой смесью на основе порошка углерода размером 5-60 мкм, нагрева и выдержки лопатки с заполненной внутренней полостью, последующее удаление порошковой смеси и нанесение диффузионного алюминидного покрытия, отличающийся тем, что насыщение внутренней полости лопатки проводят со степенью насыщения от 5 до 20 г/м2 при температуре 900-1050°С в течение 1-6 часов из порошковой смеси, дополнительно содержащей порошок хрома размером 20-80 мкм в количестве 15-38 масс.%, порошок электрокорунда в количестве 1-50 масс.%, активатор в количестве 1-2 масс.%, а нанесение диффузионного алюминидного покрытия проводят со степенью насыщения от 15 до 30 г/м2, после чего проводят вакуумный отжиг лопаток при рабочей температуре внутренней полости лопатки в течение 3-6 ч.

В качестве активатора используют хлорид аммония, фторид аммония, иодид аммония или бромид аммония.

Порошок электрокорунда используют преимущественно размером 40-80 мкм.

При совместном насыщении поверхности безуглеродистого жаропрочного сплава углеродом и хромом и последующем насыщении поверхности алюминием и вакуумном отжиге на поверхности внутренней полости лопатки образуется алюминидное покрытие, состоящее из диффузионной переходной зоны на основе субмелкодисперсных карбидов тугоплавких элементов безуглеродистого жаропрочного сплава и внешнего слоя на основе жаростойкой фазы NiAl (β фаза), содержащей до ~8% Cr (масс.%). Углерод обеспечивает формирование на поверхности жаростойкого диффузионного покрытия с карбидным переходным слоем, аналогичного для диффузионных покрытий на обычных углеродосодержащих жаропрочных сплавах с карбидным упрочнением, обеспечивающее многократное снижение диффузии алюминия и хрома в поверхность безуглеродистого жаропрочного сплава при рабочей температуре внутренней полости лопатки. Хром во внешнем слое покрытия увеличивает активность алюминия, тем самым повышая в целом жаростойкость покрытия. Так, при наличии в покрытии хрома и низком содержании алюминия (~10%) на поверхности покрытия образуется оксидная пленка Al2O3 с высокими защитными свойствами, в то время как при отсутствии хрома для образования сплошной пленки из Al2O3 необходимо более 20% Al. Одновременно с этим хром подавляет мартенситные превращения в покрытии, значительно повышая температуру, при охлаждении с которой происходит мартенситное превращение в покрытии, сопровождающееся значительными объемными изменениями, разрушающими покрытие. При этом введение достаточного количества хрома в покрытие приводит к увеличению рабочей температуры покрытия, к снижению температурного коэффициента линейного расширения покрытия и снижению уровня остаточных напряжений в нем, что в условиях теплосмен препятствует зарождению трещин термоусталости в покрытии.

Таким образом, совместное насыщение углеродом и хромом поверхности внутренней полости лопатки турбин из современных безуглеродистых жаропрочных сплавов позволяет повысить жаростойкость лопаток при рабочей температуре покрытия до 1020°С.

Степень насыщения поверхности внутренней полости от 5 до 20 г/м2 обеспечивает стабильность процесса. При этом на поверхности внутренней полости лопатки из никелевого жаропрочного сплава формируется диффузионный слой с содержанием хрома до 8 масс.%.

Использование в порошковой смеси 1-50% электрокорунда и 1-2% активатора обеспечивают легкое заполнение внутренней полости лопатки и легкое удаление смеси из этой полости.

Вакуумный отжиг лопаток с покрытием проводят для окончательного формирования исходной структуры покрытия и снятия внутренних напряжений при температуре 1000-1050°С, выдержке при этой температуре в течение 3-6 ч.

Примеры осуществления

Пример 1. Для защиты внутренней полости монокристальных лопаток турбины из безуглеродистого сплава ЖС36 проводили подготовку поверхности внутренней полости лопатки и поверхности образца из сплава ЖС36 путем гидроабразивной обработки поверхности водной суспензией, содержащей электрокорунд, размером 20 мкм. Затем проводили промывку внутренней полости водой под давлением до полного удаления электрокорунда, затем промывали лопатку и внутреннюю полость в горячей проточной и в дистиллированной воде и проводили сушку лопатки сначала на воздухе, а затем в вакуумном термошкафу при температуре 180°С. Таким образом, была подготовлена партия лопаток и образцов из сплава ЖС36. Одновременно с этим проводили подготовку исходных материалов для проведения насыщения поверхности внутренней полости лопатки углеродом, хромом и алюминием.

Проводили сушку порошков углерода, хрома, электрокорунда и активатора. Далее просушенные компоненты рабочей смеси смешивали в смесители в течение 0,5-1 часа в следующих соотношениях, масс.%: порошок хрома размером 20 мкм - 15, порошок электрокорунда размером 40 мкм - 50, порошок углерода размером 5 мкм - 34. Перед процессом насыщения в прокаленную смесь добавляли 1% активатора (NH4F) и смешивали в смесители. Затем заполняли этой смесью внутреннюю полость лопатки и лопатки укладывали в контейнер, проводили процесс насыщения по режиму 900°С/6 ч. Затем удаляли из внутренней полости лопаток порошок, продували внутреннюю полость лопатки чистым сжатым воздухом, промывали в теплой воде, сушили и определяли степень насыщения поверхности на контрольном образце из сплава ЖС36. Степень насыщения поверхности составила 5 г/м2.

Затем поверхность внутренней полости лопаток подготовили перед процессом нанесения диффузионного алюминидного покрытия (промывка внутренней полости и сушка лопаток).

Вакуумный отжиг лопаток проводили по режиму: нагрев до 1000°С и выдержка при этой температуре 6 ч.

Во всех случаях на поверхности внутренней полости лопаток из безуглеродистого сплава ЖС36 были получены хромоалюминидные покрытия с характерной двухзонной структурой, состоящей из переходного слоя на основе NiAl и карбидов тугоплавких элементов сплава ЖС36 и внешнего слоя на основе моноалюминида никеля, содержащего хром.

Пример 2

Пример 2 отличается от примера 1 тем, что в качестве смеси для насыщения использовали смесь следующего состава, масс.%: порошок хрома размером 50 мкм - 26,5, порошок электрокорунда размером 60 мкм - 26,5, активатора (NH4Cl) -2, порошка углерода размером 30 мкм - 45, процесс насыщения проводили по режиму 975°С/1 ч, а также тем, что вакуумный отжиг проводили при температуре 1025°С в течение 4,5 ч.

Пример 3

Пример 3 отличается от примера 1 тем, что в качестве смеси для хромирования использовали смесь следующего состава, масс.%: порошок хрома размером 80 мкм -38, порошок электрокорунда размером 80 мкм - 1, активатор (NH4I) -1 порошок углерода размером 60 мкм - 60, процесс насыщения проводили по режиму 1050°С/3 ч, а также тем, что вакуумный отжиг проводили при температуре 1050°С в течение 3 ч.

Полученные результаты по степени насыщения поверхности сплава ЖС36 углеродом и хромом в зависимости от состава смеси для хромирования приведены в таблице 1.

В таблице 2 приведено содержание Al и Cr в исходном покрытии в зависимости от степени насыщения поверхности этими элементами, а также жаростойкость полученных покрытий при температуре 1020°С и покрытия полученного по прототипу после испытаний в спокойной атмосфере печи на воздухе при 1000°С в течении 1000 ч.

Таблица №1
Режим насыщения поверхности сплава ЖС36 хромом и углеродом Степени насыщения поверхности сплава ЖС36 хромом и углеродом, г/м2
Смесь, масс.%: порошок хрома - 15, порошок электрокорунда - 50, активатор - 1, порошок углерода - 34 Смесь, масс.%: порошок хрома - 26,5, порошок электрокорунда - 26,5, активатор - 2 порошок углерода - 45 Смесь, масс.%: порошок хрома - 38, порошок электрокорунда - 1, активатор - 1 порошок углерода - 60
900°С 6 ч 5,2 7,1 9,1
975°С 3 ч 5,9 7,9 10,2
6 ч 9,2 14,3 18,3
1050°С 1 ч 4,1 7,3 9,3
3 ч 8,8 12,9 16,8
6 ч 15,4 18,2 21,6

Таблица №2

№ п/п Степень насыщения поверхности хромом и углеродом, г/м2 Степень насыщения поверхности алюминием, г/м2 Среднее содержание в исходном покрытии Cr/Al, масс.% Удельный привес после испытаний на жаростойкость, г/м2
1 5 15 4,8/18,7 5,6
2 12,5 22,5 6,7/20,2 4,1
3 20 30 7,8/23,7 2,8
Прототип* - 30 1,2/27,8 12,8
* - покрытие после цементации и алитирования (степень насыщения поверхности углеродом 2,6 г/м2)

Из данных, приведенных в таблице 2, видно, что насыщение поверхности безуглеродистого жаропрочного сплава хромом и алюминием позволяет значительно повысить жаростойкость композиции сплав-покрытие.

Были проведены металлографические и микрорентгеноспектральные исследования микрошлифов покрытий после испытаний на жаростойкость. Исследования показали, что после длительной выдержки на поверхности сплава, примыкающего к покрытию, ТПУ-фазы не образуются, что свидетельствует о минимальной диффузии алюминия и хрома из покрытия в сплав и эффективности такого способа защиты внутренней полости лопаток из безуглеродистых жаропрочных сплавов от высокотемпературного окисления. Также было установлено, что после испытаний на жаростойкость при температуре 1020°С в течение 1000 ч в покрытии оставался достаточный запас алюминия и хрома (соответственно 12,7-18,4 и 3,2-5,7% по массе) для обеспечения ресурса 3000 ч и более.

Таким образом, предлагаемый способ нанесения покрытия обеспечивает повышение ресурса лопаток турбины из жаропрочных безуглеродистых сплавов без изменения трудоемкости нанесения покрытия и может найти применение при освоении этих сплавов в промышленности.

1. Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля, включающий насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости лопатки порошковой смесью на основе порошка углерода размером 5-60 мкм, нагрева и выдержки лопатки с заполненной внутренней полостью, последующее удаление порошковой смеси и нанесение диффузионного алюминидного покрытия, отличающийся тем, что насыщение внутренней полости лопатки проводят со степенью насыщения от 5 до 20 г/м2 при температуре 900-1050°С в течение 1-6 ч из порошковой смеси, дополнительно содержащей порошок хрома размером 20-80 мкм в количестве 15-38 мас.%, порошок электрокорунда в количестве 1-50 мас.%, активатор в количестве 1-2 мас.%, а нанесение диффузионного алюминидного покрытия проводят со степенью насыщения от 15 до 30 г/м2, после чего проводят вакуумный отжиг лопаток при рабочей температуре внутренней полости лопатки в течение 3-6 ч.

2. Способ по п.1, отличающийся тем, что в качестве активатора используют хлорид аммония, фторид аммония, иодид аммония или бромид аммония.

3. Способ по п.1, отличающийся тем, что порошок электрокорунда используют размером 40-80 мкм.



 

Похожие патенты:
Изобретение относится к машиностроению, а именно к производству двигателей внутреннего сгорания, и может быть использовано при создании и эксплуатации двигателей различных классов и двигателей, различных по назначению.

Изобретение относится к получению комбинированных покрытий для защиты от окисления при высокой температуре металлических материалов, в частности для защиты деталей двигателей от газовой и сульфидной коррозии.

Изобретение относится к детали, имеющей износостойкую систему твердого покрытия на по меньшей мере части ее поверхности, а также к способу изготовления такой детали и к способу резания упомянутой деталью по меньшей мере отчасти твердого материала с твердостью по Роквеллу по меньшей мере 52 HRC.

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки.

Изобретение относится к отожженному и оцинкованному стальному листу, используемому при штамповке для производства автомобилей, бытовых электроприборов, строительных материалов и др.
Изобретение относится к области создания высокопрочных антифрикционных покрытий, преимущественно для пары трения гребень колеса-рельс и может быть использовано в различных узлах трения и в аэрокосмической технике.

Изобретение относится к области нанесения антифрикционных покрытий для высоконагруженных пар трения и может быть использовано для повышения износостойкости и снижения коэффициента трения трибосопряжения колесо-рельс в узлах трения различных машин, а также для защиты деталей различного оборудования от абразивного износа и других целей.
Изобретение относится к области поверхностного модифицирования полимерных изделий, металлизированных с одной или двух сторон. .

Изобретение относится к улучшенным системам покрытия, в частности к новым толстым покрытиям и способам их выполнения для получения режущих инструментов. .
Изобретение относится к области металлургии, а именно к способам получения жаростойких алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля.

Изобретение относится к металлургии, а именно к химико-термической обработке, и может найти широкое применение в машиностроении. .

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов и сплавов, и может быть использовано для повышения износо-, жаро- и коррозионной стойкости деталей машин на предприятиях металлургической, авиационной, химической, судостроительной, машиностроительной и других отраслей промышленности.

Изобретение относится к технологии термодиффузионной обработки изделий, изготовленных, преимущественно, из черных металлов и сплавов. .

Изобретение относится к химико-термической обработке металлов и сплавов и может быть использовано для поверхностного упрочнения деталей машин и инструмента, изготовленных из сталей в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности.

Изобретение относится к химико-термической обработке металлов и сплавов и может быть использовано для поверхностного упрочнения деталей машин и инструмента из штамповой стали в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности.

Изобретение относится к химико-термической обработке металлов и сплавов и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности.

Изобретение относится к химико-термической обработке металлов и может быть использовано в различных областях промышленности для повышения эксплуатационных свойств деталей и изделий.

Изобретение относится к металлургии, а именно к химико-термической обработке, и может найти широкое применение в машиностроении. .

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов и сплавов, и может быть использовано для повышения износо-, жаро- и коррозионной стойкости деталей машин на предприятиях металлургической, авиационной, химической, судостроительной, машиностроительной и др.
Изобретение относится к упрочнению деталей машин и инструмента из железоуглеродистых сплавов и может быть использовано при производстве деталей машин и инструмента в машиностроительной, металлургической, химической, строительной и других отраслях промышленности, обладающих в 2-10 раз большим ресурсом работы

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении

Наверх