Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления

Изобретение относится к технологии изготовления тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем. Сущность: разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания. Контроль скорости изменения начального выходного сигнала осуществляют по соотношениям скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерении начального выходного сигнала при термостабилизации. Технический результат: повышение стабильности начального и номинального выходного сигнала датчиков, выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления.

 

Изобретение относится к электронной технике, в частности к технологии изготовления тонкопленочных тензорезисторных датчиков давления. Современные тонкопленочные тензорезисторные датчики давления относятся к изделиям нано- и микросистемной техники, использующим в качестве чувствительных элементов тонкопленочные тензорезисторные нано- и микроэлектромеханические системы [1, 2].

Известен способ температурной стабилизации мостовой схемы нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающийся в циклической термостабилизации перепадом температур и последующим воздействием механической нагрузкой, превышающей максимально рабочую, охлаждении упругого элемента перед механическим нагруженном жидким азотом и контроле выходного сигнала, циклического разогрева упругого элемента постоянным током с одновременным действием механической нагрузки до момента становления постоянного выходного сигнала [3].

Недостатком этого способа является сложность, высокая трудоемкость процесса термостабилизации упругого элемента, заключающегося в циклическом воздействии температур, механической нагрузки и воздействии постоянного тока до установления постоянного выходного сигнала.

Наиболее близким по технической сущности является способ стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала согласно формуле

где ΔVi - скорость изменения величины начального выходного сигнала через каждый час, мВ/ч;

U0ti - начальный выходной сигнал при напряжении Un=(6,0±0,05) В, температуре 80°С после термостабилизации за время ti, мВ;

U0ti+1 - начальный выходной сигнал при напряжении Un=(6,0±0,05) В, температуре 80°С после термостабилизации за время ti+1, мВ;

i=1…5 - количество измерений;

Т=1 ч;

при этом, если ΔVi>0,1 мВ/ч, нано- и микроэлектромеханическую систему датчика давления следует браковать [4].

Недостатком этого способа является низкая эффективность стабилизации, заключающаяся в том, что не все потенциально нестабильные по начальному выходному сигналу нано- и микроэлектромеханические системы отбраковываются. Это связано как с неоптимальными режимами способа стабилизации, так и недостаточно жестким критерием отбраковки, а также с недостаточной точностью определения критерия отбраковки. Недостатком известного способа является также необходимость изменения напряжения питания при измерении начального выходного сигнала.

Целью изобретения является повышение стабильности начального и номинального выходного сигнала тонкопленочного тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы и выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления за счет повышения эффективности стабилизации, оптимизации режимов стабилизации, повышения температуры воздействующей на нано- и микроэлектромеханическую систему при определении начального выходного сигнала, ужесточения критериев отбраковки, а также повышения точности определения критерия отбраковки.

Поставленная цель достигается тем, что в способе стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающемся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, в соответствии с заявляемым решением разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям

где ΔYi, ΔYi-1 - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерении начального выходного сигнала при термостабилизации, соответственно, мВ/(В·ч);

U0ti-2, U0ti-1, U0ti, - начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерении начального выходного сигнала при термостабилизации соответственно, мВ;

UWti-2, UWti-1, UWti - напряжения питания при измерении соответственно значений начальных выходных сигналов U0ti-2, U0ti-1, U0ti, B;

i=5 - количество измерений;

ti-1=ti=1,5 - время между предпоследним и последним измерением начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерении(ΔYi-1-ΔYi) будет более 0,003 мВ/(В·ч) и по 0,005 мВ/(В·ч), а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔYi - более 0,003 мВ/(В·ч) и по 0,005 мВ/(В·ч), то нано- и микроэлектромеханическую систему датчика давления следует браковать.

Способ осуществляют следующим образом. В случае отсутствия (вследствие конструктивных особенностей конкретного исполнения нано- и микроэлектромеханической системы) возможности подачи давления на приемную полость помещают нано- и микроэлектромеханическую систему в технологическое приспособление, обеспечивающее такую возможность. Герметизируют внутреннюю полость нано- и микроэлектромеханической системы датчика для исключения в последующем дестабилизирующего влияния внешней окружающей среды. Импульсным током кратковременно разогревают обрабатываемую пленку тонкопленочных тензорезисторов до высоких температур, добиваясь высокотемпературного отжига тензорезисторов. Высокотемпературный отжиг приводит к изменению структуры тонкой пленки в первую очередь в местах наибольшей дефектности пленки и, таким образом, выявляются потенциально нестабильные тензорезисторы.

Одновременно воздействуют на приемную полость нано- и микроэлектромеханической системы давлением, превышающим в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации. Например, при максимально допустимом перегрузочном давлении, равном 100 МПа, воздействуют давлением 105 МПа, при минимально допустимой пониженной температуре при эксплуатации минус 196°С воздействуют температурой минус 196°С и при максимально допустимой повышенной температуре при эксплуатации +100°С воздействуют температурой +105°С. Одновременное воздействие на приемную полость нано- и микроэлектромеханической системы давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, позволяет улучшить выявление потенциально нестабильных тензорезисторов. Совместное воздействие импульсной токовой обработки, повышенного давления и широкого диапазона температур позволяет достичь контролируемого упорядочения структуры пленки тензорезисторов и образования устойчивых мостиков проводимости между отдельными зернами тонкопленочных тензорезисторов. Кроме того, совместное воздействие импульсной токовой обработки, повышенного давления и широкого диапазона температур стабилизирует начальный и номинальный выходной сигнал датчика.

Проводят термостабилизацию при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Например, при максимально допустимой повышенной температуре при эксплуатации +100°С воздействуют температурой +105°С. Превышение воздействующих давлений и температур, превышающих в 1,05 раза максимально допустимые при эксплуатации обеспечивает исключение воздействий на датчик при эксплуатации, сочетаний факторов, которые могли бы повлиять на стабильность. В то же время дальнейшее ужесточение режимов нецелесообразно в связи с ухудшением долговременной стабильности тензорезисторов вследствие появления значительных термомеханических напряжений.

Измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, что повышает точность определения критерия отбраковки за счет увеличения величины выходного сигнала при повышенном напряжении питания. Например, при номинальном напряжении питания 6В измерение начальных выходных сигналов проводят при повышенном напряжении 9В, что увеличивает величину выходного сигнала в 1,5 раза. Кроме того, повышение напряжения питания приводит к повышению тока через тензорезисторы, повышая тем самым качество стабилизации. Точность определения критерия отбраковки дополнительно увеличивается за счет учета напряжения питания в соотношениях скорости изменения приведенных значений начальных выходных сигналов. Учитывая, что в прототипе измерение начального выходного сигнала проводится при напряжении питания Un=(6,0±0,05), учет напряжения питания в соответствии с предлагаемым решением позволяет уменьшить погрешность измерения начального выходного сигнала не менее чем на ±0,83%.

Увеличение времени между предпоследним и последним измерением начального выходного сигнала при термостабилизации также увеличивает точность определения критерия отбраковки за счет повышения точности определения скорости изменения начального выходного сигнала. Введение дополнительного критерия по скорости изменения начального выходного сигнала при предпоследнем измерении повышает объективность контроля стабильности. Ужесточение критериев отбраковки повышает стабильность начального и номинального выходного сигнала нано- и микроэлектромеханической системы за счет более тщательного выявления скрытых дефектов тензорезисторов. В то же время дальнейшее ужесточение критерия нецелесообразно вследствие увеличения в этом случае погрешности измерения наиболее распространенных цифровых вольтметров.

Предлагаемое решение по сравнению с прототипом по результатам тестовых испытаний позволяет повысить стабильность начального выходного сигнала не менее чем в 1,3 раза, а стабильность номинального выходного сигнала не менее чем в 1,1 раза. Таким образом, техническим результатом заявляемого решения является повышение стабильности начального и номинального выходного сигнала тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем и выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления за счет повышения эффективности стабилизации, оптимизации режимов стабилизации, повышения температуры, воздействующей на нано- и микроэлектромеханическую систему при определении начального выходного сигнала, ужесточения критериев отбраковки, а также повышения точности определения критерия отбраковки.

Источники информации

1. Белозубов Е.М., Белозубова Н.Е. Тонкопленочные тензорезисторные датчики давления - изделия нано- и микросистемной техники // Нано- и микросистемная техника - 2007. - №. 12. - С.49 - 51.

2. Белозубов Е.М., Васильев В.А., Громков Н.В. Тонкопленочные нано- и микроэлектромеханические системы - основа современных и перспективных датчиков давления для ракетной и авиационной техники // Измерительная техника. - М., 2009.- №7. - С.35-38.

3. RU, А.с. №1182289, МПК G01L 7/08, Бюл. №28. 30.09.85.

4. RU, Патент №2301977, МПК G01L 7/02, Бюл. №18. 27.06.2007.

Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, отличающийся тем, что разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям


где ΔYi, ΔYi-1 - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ/В·ч;
U0ti-2, U0ti-1, U0ti - значения начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ;
UWti-2, UWti-1, UWti - напряжения питания при измерении соответственно значений начальных выходных сигналов U0ti-2, U0ti-1, U0ti, В;
i=5 - количество измерений;
ti-1=ti=1,5 - время между предпоследним и последним измерениями начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерениях (ΔYi-1-ΔYi) будет более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔYi - более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, то нано- и микроэлектромеханическую систему датчика давления следует браковать.



 

Похожие патенты:

Изобретение относится к области техники измерения импульсных давлений и может найти широкое применение для калибровки различного типа датчиков импульсного давления, а также для проверки и установления их работоспособности.

Изобретение относится к калибровке датчиков в системе, содержащей множество датчиков, которые расположены с возможностью действия на них одной и той же нагрузки. .

Изобретение относится к контрольно-измерительной технике и может быть использовано в приборостроении при разработке и изготовлении современных датчиков давления.

Изобретение относится к приборостроению, в частности к устройствам динамической тарировки датчиков давления, которые используются при исследовании быстропротекающих процессов, например, в технологии магнитно-импульсной и электрогидравлической обработки материалов.

Изобретение относится к приборостроению, в частности к устройствам, создающим давление газа, и может быть использовано в метрологических целях для проведения калибровки или поверки средств контроля и измерения давления методом сличения.

Изобретение относится к приборостроению, а именно к производству стрелочных приборов, и применяется для индивидуальной градуировки шкал манометров. .

Изобретение относится к контрольно-измерительной аппаратуре и используется в составе поверочной установки для метрологической аттестации измерителей артериального давления и частоты сердечных сокращений.

Изобретение относится к области измерительной техники и может быть использовано для определения статических и динамических характеристик газодинамических объектов, например, аэрометрических преобразователей, приемников воздушных давлений, преобразователей давлений, расходов (скоростей), воздухозаборников, газовоздушных трактов авиационного двигателя и др.

Изобретение относится к измерительной технике, а именно к регуляторам давления газовых сред, и может быть использовано в пневмогидросистемах с ограниченным жизненным пространством и в пневматических системах энергетических установок с жесткими требованиями к точности величины регулируемого давления.

Изобретение относится к композитам, включающим неорганические микропигменты и/или наполнители в форме поверхностно фосфатированных микрочастиц, поверхность которых, по меньшей мере, частично покрыта мелко измельченными наночастицами карбоната щелочноземельного металла посредством связующих на основе сополимеров, включающих в качестве мономеров одну или более дикарбоновых кислот и один или более мономеров из группы диаминов, триаминов, диалканоламинов или триалканоламинов и эпихлоргидрина, способ получения таких композитов, их водных взвесей и их применение в производстве бумаги или в области производства красок и пластмасс, а также применение связующих для покрытия микрочастиц нанокарбонатом щелочноземельного металла.

Изобретение относится к химическому производству, а также к железнодорожному и автотранспорту, а именно к материалу, используемому для амортизаторов сцепного устройства вагонов, компенсирующих динамические продольные нагрузки, действующие на сцепки грузовых железнодорожных вагонов и локомотива в процессе их эксплуатации, а также и для других резинотехнических изделий.
Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий.

Изобретение относится к химико-фармацевтической промышленности и медицине и представляет собой контрастное средство для T 1 и/или T2 магнитно-резонансного сканирования, состоящее из наноразмерного суперпарамагнитного порошка кубической кобальтовой феррошпинели CoxFe3-xO 4, где 0.1 x 0.99, с размером частиц 3÷20 нм.
Изобретение относится к рентгеноконтрастному средству для рентгенологических исследований различных органов. .
Изобретение относится к гальванической частице, которая состоит из цинка, частично покрытой медью. .
Изобретение относится к фармацевтической композиции для лечения цитостатической миелосупрессии. .

Изобретение относится к композициям для получения резиновых смесей, используемых в различных отраслях промышленности, где требуются высокие термоагрессивостойкие свойства.

Изобретение относится к резиновой промышленности и может быть использовано для изготовления различных экструзионных профилей и формованных гибких деталей. .
Наверх