Устройство для сухого обогащения минерального сырья

Изобретение относится к средствам сухого обогащения минерального сырья. Устройство для сухого обогащения минерального сырья содержит узел измельчения материала до требуемой крупности, приспособление для подачи измельченных частиц с использованием сжатого воздуха на блок сепарации, использующий разную степень сопротивления движению частиц в воздухе. Для измельчения исходного сырья до требуемой крупности и узкого гранулометрического распределения используются диски встречного вращения с динамической кольцевой щелью, для выпуска измельченных частиц в воздушную среду под давлением используется трубка с соплом, формирующая узкий пучок частиц. Для сбора частиц разной плотности или группы частиц, близких по плотности, используются отверстия, расположенные в местах максимального разделения частиц разной плотности. Технический результат - повышение эффективности обогащения минерального сырья. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к средствам сухого обогащения минерального сырья.

Около 100 элементов таблицы Менделеева образуют с 17 элементами этой же таблицы (O, C, S, F, Cl, N, H, B, I, Br, As, Те, Se, Si, P, Sb) больше 2400 неорганических молекулярных соединений, имеющих соответствующую плотность (до 22420 кг/м3 для оксида платины). Некоторые элементы, например золото (Au), находятся в природе в чистом виде. Почти все такие образования имеют несколько форм. Например, соединение кремния Si с кислородом O, выражающееся одной и той же формулой SiO2, имеет 7 модификаций, отличающихся структурной упаковкой и, следовательно, плотностью.

Под минеральным сырьем подразумеваются слабо связанные (по сравнению с внутримолекулярными и межмолекулярными связями) образования из нескольких таких соединений, распределенные по объему руды. Обычно энергии связи выражаются в единицах кДж/моль. Рассмотрим соотношение внутримолекулярных, межмолекулярных связей и связей между частицами таких соединений в минеральном сырье на примере SiO2. Под частицами понимаются образования, имеющие крупность порядка 40-60 мкм. Энергия внутримолекулярной связи в SiO2 равна 637 кДж/моль - 10,6 кДж/г. Энергия межмолекулярной связи - 213 кДж/моль (3,8 кДж/г). В минеральном сырье плотность энергии межмолекулярных связей всегда в несколько раз меньше плотности энергии внутримолекулярных связей. Связь между молекулярными микрочастицами можно вычислить из значения предела прочности при сжатии для данного вещества. В справочниках прочность выражается в единицах давления Па, что идентично единицам Дж/м3. Для приведения значения прочности к единицам кДж/г нужно справочное значение в МПа разделить на справочное значение плотности и полученное уменьшить в 1000 раз. Например для β-тридимита SiO2 плотность равна 2260 кг/м3, а предел прочности при сжатии равен 60 МПа. Отсюда плотность энергии связи между микрочастицами β-тридимита в минеральном сырье равна 0,027 кДж/г, что в 140 раз меньше плотности межмолекулярных связей.

При производстве какого-либо продукта актуальным является обогащение данного продукта, т.е. увеличение массового содержания по сравнению с исходным рудным материалом (минеральным сырьем).

Сухое обогащение имеет преимущества перед другими, применяющими воду, другие растворители и химические реагенты, т.к. отпадает необходимость в последующей сушке и очистке готового продукта, шламонакопителях.

При сухом обогащении используются: обнаружение искомого продукта по вторичному излучению (RU №2131781, опубл. 20.06.1999), последовательное выделение и рассеивание продуктов по линейному размеру частиц (US 43754554, опубл. 01.03.1983, US 5470554, опубл. 28.11.1995, RU 2390380, опубл. 27.05.2010), разделение продуктов по массе частиц при движении по наклонной плоскости (RU 2142859, опубл. 20.12.1999, RU 2292243, опубл. 15.03.2007), центробежно-ударное разделение с последующей сухой магнитной сепарацией (RU 2381079, опубл. 10.02.2010, RU 2370326, опубл. 20.10.2009).

Наиболее близким аналогом является устройство для сухого обогащения рудных материалов, включающее предварительное вибровозбуждение материала и последующее разделение частиц в концентрационном элементе по аэродинамическому сопротивлению частиц, движущихся по гладкой и пористой поверхности (RU 2374002, опубл. 27.11.2009).

Недостатками данного устройства являются широкий спектр гранулометрического состава частиц после вибровозбуждения и ограниченные возможности разделения частиц разной формы и плотности лишь по разнице трения о гладкую и пористую стенки.

Задачей изобретения является разделение (сепарация) молекулярных компонентов, содержащихся в данном минеральном сырье и различающихся по плотности.

Техническим результатом изобретения является непосредственное получение высокообогащенных молекулярных продуктов, составляющих минеральное сырье.

Технический результат достигается тем, что в начале переработки рудного материала он измельчается до требуемой крупности узкого гранулометрического состава и, непосредственно после измельчения, выпускается через одно или несколько сопел под давлением в воздушную среду до попадания в приемные емкости. При этом в каждую приемную емкость попадает отдельный продукт или группа продуктов, различающихся по плотности.

Сущность изобретения поясняется рисунком 1, где:

1. Емкость, в которую подается исходное минеральное сырье крупностью до 25 мм.

2. Рабочая камера тонкого помола сырья, герметизированная от емкости 1.

3. Накопительная емкость помолотого сырья, которое не разделилось на отдельные продукты, этот полупродукт возвращается в начало процесса.

4. Диски встречного вращения, кольцевая щель между ними задает предельную крупность помолотого сырья.

5. Выпускное сопло (их может быть несколько), через которое помолотый материал нужной крупности выпускается параллельно горизонту под заданным давлением.

П1, П2, П3, П4 - емкости сбора конечных продуктов.

На рисунке координаты движения частиц обозначены как x и y, их положительное значение - в направлении стрелок.

Устройство работает следующим образом.

Исходное минеральное сырье крупностью, обычно применяемой перед измельчением в шаровых мельницах (20-25 мм), подается в емкость 1. Далее под воздействием всасывающего потока воздуха, создаваемого дисками встречного вращения 4, частицы сырья попадают в пространство между этими дисками, где измельчаются при соударении друг с другом. Необходимая рабочая частота вращения дисков τ зависит от предела прочности при сжатии перерабатываемого минерала σ и определяется из соотношения:

D - диаметр дисков (м);

ρ - плотность частиц минерального сырья (кг/м3).

Максимальный размер измельченных частиц регулируется шириной кольцевой щели между дисками.

Смесь частиц различной плотности, но одинакового спектра геометрических форм, выпускается из сопла 5. Перепад давления между областью до выпускного отверстия и средой движения частиц обозначаем Р. Уравнения движения частиц по координатам x и y записываются следующим образом:

g - ускорение свободного падения (9,8 м/с2);

ξ - основной баллистический параметр.

k - коэффициент силы сопротивления движению частицы в воздухе;

ρв - плотность воздуха (1,2 кг/м3);

ℓ - крупность (линейный размер) частицы (м).

Коэффициент сопротивления k - безразмерная величина, его численное значение определяется формой частиц, которые при измельчении имеют форму сколотых параллелепипедов и пирамидок. Наиболее вероятное значение k находится в диапазоне 0,4-0,6 и определяется экспериментально при калибровке устройства. Распределение частиц по коэффициенту сопротивления подчиняется нормальному закону распределения ошибок. Параметр этого распределения δ также определяется экспериментально (типичное значение - 0,25). Решение уравнений (1) по координатам x и y:

t - текущее время процесса;

τ, θ - характеристические параметры (времена) изменения со временем координат частицы x и y соответственно. Их значения определяются формулами:

Молекулярные продукты или группа продуктов, попавшие в емкости П1, П2, П3 и П4, могут быть конечными либо могут подаваться на дальнейший передел (многокаскадная сепарация).

Т.о. предлагается устройство для сухого обогащения минерального сырья, содержащее узел измельчения материала до требуемой крупности, подачу измельченных частиц с использованием сжатого воздуха на блок сепарации, использующий разную степень сопротивления движению частиц в воздухе, при этом для измельчения исходного сырья до требуемой крупности и узкого гранулометрического распределения используются диски встречного вращения с динамической кольцевой щелью, для выпуска измельченных частиц в воздушную среду под давлением используется трубка с соплом, формирующая узкий пучок частиц, а для сбора частиц разной плотности или группы частиц, близких по плотности, используются отверстия, расположенные в местах максимального разделения частиц разной плотности. Выпуск измельченных частиц производится через несколько трубок, а для приема частиц используется кратное числу выпускных трубок количество отверстий. Обогащение производится в несколько стадий, каждая из которых в качестве сырья используется продукт предыдущей стадии обогащения.

Большинство природных минералов по описанной технологии могут быть обогащены до большей степени по сравнению с традиционными технологиями, а при определенном снижении производительности - до химически чистых продуктов.

Также преимуществом технологии является то, что она практически не дает отходов, так как могут быть использованы в производстве любые отделенные молекулярные продукты. Это важно также с точки зрения экологической безопасности производства.

1. Устройство для сухого обогащения минерального сырья, содержащее узел измельчения материала до требуемой крупности, подачу измельченных частиц с использованием сжатого воздуха на блок сепарации, использующий разную степень сопротивления движению частиц в воздухе, отличающееся тем, что для измельчения исходного сырья до требуемой крупности и узкого гранулометрического распределения, используются диски встречного вращения с динамической кольцевой щелью, для выпуска измельченных частиц в воздушную среду под давлением используется трубка с соплом, формирующая узкий пучок частиц, а для сбора частиц разной плотности или группы частиц, близких по плотности, используются отверстия, расположенные в местах максимального разделения частиц разной плотности.

2. Устройство по п.1, отличающееся тем, что выпуск измельченных частиц производится через несколько трубок, а для приема частиц используется кратное числу выпускных трубок количество отверстий.

3. Устройство по п.1, отличающееся тем, что обогащение производится в несколько стадий, каждая из которых в качестве сырья использует продукт предыдущей стадии обогащения.



 

Похожие патенты:

Изобретение относится к отделению от газовой среды твердых фракций мелкодисперсных частиц. .

Изобретение относится к устройствам для разделения частиц в смесях по размеру и измельчения целых зерен и крупных частиц до проходового размера при дроблении зернового сырья комбикормов и других продуктов.

Изобретение относится к гранулам, таблеткам, а также способу и установке для их получения. .
Изобретение относится к обогащению полезных ископаемых, в частности к дезинтеграции кусковой горной массы, которая содержит частицы полезного компонента в обособленном виде или в породных сростках.

Изобретение относится к мукомольной промышленности, химической, цементной и другим отраслям, может быть использовано для разделения сыпучих и порошкообразных материалов.

Изобретение относится к области порошковой технологии и может быть использовано в металлургической, машиностроительной, химической и других отраслях промышленности, связанных с переработкой порошкообразных материалов, особенно порошков с размерами частиц меньше 10 мкм, склонных к слипанию и агломерации.

Изобретение относится к устройствам, обеспечивающим очистку загрязненного воздушного и газового потоков и может быть использовано в энергетической, химической, машиностроительной и других отраслях промышленности, где есть пыле-золо-газовые выбросы в атмосферу.

Изобретение относится к машиностроению, а именно к воздушным центробежным классификаторам с вращающимся рабочим органом, и может найти применение в строительной, химической, пищевой и других отраслях промышленности для разделения различных сыпучих материалов по крупности.

Изобретение относится к разделению продуктов размола и может найти применение в агропромышленном комплексе при переработке зерна в муку. .

Изобретение относится к воздушным сепараторам, применяющимся для очистки зерна от легких примесей на зерноперерабатывающих предприятиях с внутрицеховым пневматическим транспортом.

Изобретение предназначено для отделения древесных волокон от потока пара. Сепаратор включает корпус, включающий первую камеру, определяющую изогнутую траекторию потока пара, проходящего через сепаратор, и вторую камеру, причем первая камера прилегает ко второй камере и камеры разделены разделительной стенкой; ротор в сборе, расположенный в первой камере, которая включает внешнюю радиальную зону, которая продолжается радиально между ротором в сборе и внутренней поверхностью первой камеры; входной порт потока в первую камеру и выходной порт волокон из первой камеры, причем входной и выходной порты выровнены по отношению к внешней зоне первой камеры, при этом отверстие прохода для пара в первой цилиндрической камере находится радиально внутри от наружной радиальной зоны, ротор в сборе включает лопатки ротора, ширина которых проходит по существу по всей ширине первой камеры, так что по существу нет пустот между боковыми краями лопаток и соответствующей боковой стенкой первой камеры для предотвращения накопления волокон на боковой стенке и краях лопаток. Технический результат: устранение истирания кромок лопастей ротора о корпус и накопления волокон в небольших пустотах между краями ротора и корпусом. 3 н. и 15 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению, а именно к воздушным центробежным классификаторам с вращающимся рабочим органом, и может найти применение в строительной, химической, пищевой и других отраслях промышленности для разделения различных сыпучих материалов по крупности. Воздушный центробежно-динамический классификатор, содержащий корпус с крышкой, выполненной с отверстиями, рабочий орган, состоящий из верхнего диска, нижнего диска и лопаток, расположенных между дисками на их периферийной части, тангенциальный патрубок для подачи исходного материала, расположенный в верхней части корпуса, патрубок для вывода мелкой фракции вместе с воздушным потоком, расположенный в верхней части корпуса и сообщающийся с центральной частью рабочего органа, патрубок для вывода крупной фракции с разгрузочным устройством, расположенный в нижней части корпуса, и привод рабочего органа. Отверстия выполнены вокруг патрубка для вывода мелкой фракции вместе с воздушным потоком. Классификатор содержит плоское кольцо, расположенное непосредственно над крышкой корпуса с возможностью фиксированного вращения вокруг патрубка для вывода мелкой фракции вместе с воздушным потоком и выполненное с отверстиями, совпадающими с отверстиями, выполненными в крышке корпуса. Технический результат - повышение эффективности классификации. 4 ил.

Изобретение относится к машиностроению, в частности к воздушным центробежно-инерционным классификаторам, и может быть использовано в строительной, горно-обогатительной, химической, металлургической и других отраслях промышленности для разделения по крупности различных сыпучих материалов. Воздушный центробежно-инерционный классификатор содержит наружный цилиндроконический корпус с крышкой, выполненной воронкообразной с выходным отверстием, расположенным вверху, патрубком для вывода мелкой фракции вместе с воздушным потоком, расположенным на крышке корпуса, и патрубком для вывода крупной фракции, расположенным в нижней части корпуса, внутренний цилиндроконический корпус со слабоконической крышкой, установленной вершиной вверх, и патрубком для вывода крупной фракции, расположенным в нижней части корпуса, лопатки, снабженные механизмом фиксированного поворота вокруг горизонтальной оси и расположенные равномерно между цилиндрическими участками наружного и внутреннего корпусов, и трубу для подачи исходного материала вместе с воздушным потоком, расположенную в нижней части наружного корпуса. Цилиндрические части внутреннего и промежуточного корпусов выполнены с кольцевыми карманами. Поворотные лопатки своими боковыми частями расположены в этих карманах. Технический результат - повышение эффективности разделения материала. 1 ил.

Изобретение относится к области разделения дисперсных материалов посредством воздействия на них воздушных структур, обеспечивающих получение фракций по совокупности физико-механических свойств с одновременной очисткой технологического воздуха, и может быть использовано в различных областях производства, например горнообогатительного, зерноперерабатывающего, энергетического. Способ пневмофракционирования дисперсных материалов и очистки технологического воздуха включает ввод аэродисперсного потока через тангенциальный патрубок в сужающийся изменяемый винтовой объем, образованный внутренней поверхностью корпуса, имеющего регулируемую перфорацию на конической боковой поверхности, витками винтовой поверхности и наружной поверхностью выхлопной трубы, транспортирование аэродисперсного потока внутри названного объема через зону дифференцированного пневмофракционирования дисперсных материалов, очистки и вывода технологического воздуха путем регулируемого ускорения аэросмеси с выделением фракций, сформированной винтовым объемом верхнего участка корпуса с винтовой поверхностью, вывод фракций через перфорацию в герметичный объем и вывод очищенного технологического воздушного потока с нисходящей траектории на восходящую в выхлопную трубу. Транспортирование аэродисперсного потока осуществляют как минимум через три зоны дифференцированного пневмофракционирования дисперсных материалов, очистки и вывода технологического воздуха путем регулируемого ускорения аэросмеси с предварительным выделением крупных фракций в верхней зоне, сформированной винтовым объемом верхнего участка корпуса с винтовой поверхностью и обеспечивающей необходимую скорость прохождения средней зоны, путем дальнейшего продвижения аэросмеси с выделением средней фракции в средней зоне, сформированной диффузорно-конфузорным кольцевым объемом среднего участка корпуса ниже винтовой поверхности, изменяемым посредством изменения формы и размера зоны перфорации для выделения средней фракции и посредством регулирования установки нижнего торца выхлопной трубы с выводом в нее части очищенного воздушного потока, путем дальнейшего продвижения обогащенной аэросмеси в нижней зоне управляемого разворота обогащенной аэросмеси для выделения тонкой фракции через боковую и торцевую поверхности корпуса и вывода очищенного воздушного потока в выхлопную трубу, сформированной кольцевым объемом нижнего участка корпуса с соосной с последним винтовой поверхностью, регулируемой по форме, высоте и диаметру. Технический результат - повышение эффективности разделения на фракции продуктов размола частиц от 240 мкм до 0,1 мкм с очисткой технологического воздуха до 99,8%. 2 з.п. ф-лы, 1 ил.

Изобретение относится к центробежному устройству для выборочного гранулометрического разделения твердых порошкообразных веществ, а также к способу использования такого устройства. Центробежное устройство выборочного гранулометрического разделения твердых порошкообразных веществ, выполненное с возможностью разделения веществ на две фракции - фракцию мелких веществ и фракцию крупных веществ, содержит кожух, цилиндрический ротор с распределенными по его периферии лопастями, расположенный внутри указанного кожуха и вращающийся относительно него вокруг вертикальной оси, средства подачи в кожух потока газа, входящего в ротор через лопасти, набор лопаток, установленных неподвижно внутри кожуха и окружающих ротор, выполненных с возможностью регулирования своего направления и расположенных коаксиально с лопастями так, чтобы через них мог проходить входящий поток газа, средства подачи предназначенных для сортировки твердых веществ в указанный кожух между лопатками и ротором, выход ротора для удаления потока газа и увлекаемых с ним мелких веществ, средства сбора, расположенные ниже указанного ротора для не увлекаемых газом падающих крупных веществ. Средства сбора содержат периферическую систему с псевдоожиженным слоем, слой в которой расположен вокруг оси (А) ротора, по меньшей мере, под указанными лопатками и промежуточным пространством, заключенным между указанными лопатками и ротором. Скорость газа псевдоожижения в горизонтальном сечении псевдоожиженного слоя меньше 1 м/с, чтобы производить новое разделение между мелкими веществами и крупными веществами, при котором указанные мелкие вещества возвращаются в промежуточное пространство между указанными зонами и указанным ротором. Технический результат - повышение эффективности разделения твердых порошкообразных веществ. 2 н. и 16 з.п. ф-лы, 5 ил.

Изобретение относится к области порошковой технологии и может быть использовано в металлургической, машиностроительной, химической и других отраслях промышленности, связанных с переработкой порошкообразных материалов, особенно порошков с размерами частиц меньше 100 мкм, склонных к слипанию и агломерации. Способ газовой центробежной классификации и измельчения порошков включает центробежную сепарацию частиц в центре восходящего пылегазового потока, получение средней фракции частиц и рециркуляцию этих частиц. В центре тангенциального восходящего потока формируют пылегазовый поток исходных частиц и направляют его в профилированную зону сепарации с выделением крупной фракции частиц, продуваемой дополнительным встречным потоком газа с расходом 10-30% от основного потока. Среднюю фракцию частиц после центробежной классификации подают с помощью эжекционного эффекта в зону для измельчения, выполненную в виде вихревой камеры, со встречными закрученными пылегазовыми потоками и создают рециркуляцию этих частиц. Газовый поток с мелкой фракцией частиц вводят в профилированную зону сепарации с увеличением центробежной силы по сравнению с силой аэродинамического сопротивления частиц минимум в два раза. Технический результат - повышение эффективности классификации, а также расширение диапазона регулирования границы разделения. 2 ил.

Изобретение относится к регулируемым сепараторам, позволяющим регулировать размеры частиц измельчаемого материала на мельнице для твердого топлива и может быть использована для отделения более крупных частиц от более мелких частиц, захваченных восходящими воздушными потоками. Сепараторная система содержит кожух, имеющий по существу круглое поперечное сечение, внутреннюю камеру, ограниченную расположенным внутри кожуха усеченным конусом, наружную камеру между кожухом и конусом, сортировочное кольцо в верхней части конуса с множеством окон с лопастями и выход топливопровода над сортировочным кольцом. Лопасти шарнирно установлены рядом с каждым окном с возможностью частичного или полного закрывания окна. Регулируемый сепаратор позволяет оптимизировать процесс измельчения. 13 з.п. ф-лы, 4 ил.

Изобретение относится к технике для разделения сыпучих материалов, например порошков, с различным гранулометрическим составом частиц на фракции и может быть использовано в промышленности строительных материалов, химической, энергетической и других отраслях. Циркуляционный динамический сепаратор сыпучих материалов состоит из корпуса, загрузочного канала, приводного вала, вентилятора, распределительного диска, контрлопастей, крыльчатки, камеры осаждения крупной фракции, соединенной лопастями с расположенной над ней сепарационной камерой, камеры осаждения мелкой фракции, разгрузочных каналов мелкой и крупной фракций. На внутренней поверхности сепарационной камеры закреплено устройство для дополнительного закручивания пылегазового потока, выполненное в виде рядов многозаходных лент. Ленты каждого ряда эквидистантно расположены на внутренней поверхности сепарационной камеры по многозаходным винтовым линиям с направлением винта в сторону вращения приводного вала. Ленты по отношению к внутренней поверхности сепарационной камеры закреплены с образованием каналов отвода материала. Технический результат - повышение эффективности процесса сепарации циркуляционного динамического сепаратора сыпучих материалов. 2 ил.

Изобретение относится к устройствам для непрерывной обработки и разделения по удельным весам веществ, находящихся в промышленных, бытовых и других отходящих газах, и может найти применение в химической, энергетической, пищевой и других отраслях промышленности, а также в коммунальном хозяйстве при обработке воздушных сред очистных сооружений. Аэроциклон для воздушных сред, содержащих мелкие твердые фракции, включает цилиндроконический корпус с тангенциальным питающим, сливным и песковым патрубками. Внутри корпуса по центральной оси установлен разрядный блок электроозонирующего устройства. При этом площади поперечного сечения корпуса аэроциклона и разрядного блока выполнены в соотношении 1/(0,5÷0,7), создающем сопротивление воздушному потоку, позволяющее при соответствующем давлении подачи воздуха обеспечить возможность создания устойчивой турбулентности. Техническим результатом является повышение качества, а также интенсификации процесса обработки за счет применения высокопроизводительной непрерывной технологии, позволяющей пропускать поток воздуха в аппарате со скоростью от 1,5 до 3,5 м/с в зависимости от конструктивно-технологических особенностей. 1 ил.

Изобретение относится к устройствам для непрерывной обработки и разделения по удельным весам веществ, находящихся в промышленных, бытовых и других отходящих газах, и может найти применение в химической, энергетической, пищевой и других отраслях промышленности, а также в коммунальном хозяйстве при обработке воздушных сред очистных сооружений. Дегазатор для воздушных сред, содержащих крупную твердую фракцию, состоит из цилиндроконического корпуса с тангенциальным питающим, сливным и песковым патрубками. На входе сливного патрубка установлен разрядный блок электроозонирующего устройства. Площади поперечного сечения цилиндроконического корпуса, питающего, сливного патрубков и разрядных блоков выполнены в соотношении 1/(0,5÷0,7), создающем сопротивление воздушному потоку, позволяющее при соответствующем давлении подачи воздуха обеспечить возможность создания устойчивой турбулентности. Техническим результатом является повышение качества, а также интенсификация процесса обработки за счет применения высокопроизводительной непрерывной технологии, позволяющей пропускать поток воздуха в аппарате со скоростью от 1,5 до 3,5 м/с в зависимости от конструктивно-технологических особенностей. 1 ил.
Наверх