Способ каталитического гидрирования тетрахлорида кремния

Изобретение относится к получению кремнийсодержащих материалов, которые используются в процессах получения полупроводникового кремния. Способ включает каталитическое гидрирование тетрахлорида кремния с последующим разделением продуктов реакции, при этом в качестве катализатора используют хлориды переходных металлов или их смеси, гидрирование ведут при температуре не ниже 200°C, предпочтительно при 300-350°C, а образующиеся продукты реакции охлаждают до температуры не выше 100°C. Способ является энергосберегающим за счет гидрирования тетрахлорида кремния при низкой температуре с достаточно высокой конверсией по тетрахлориду кремния порядка 75-90%. При проведении процесса из смеси продуктов удаляют образующиеся хлорсиланы, а непрореагировавшие тетрахлорид кремния и водород возвращают в технологический цикл, что позволяет доводить конверсию тетрахлорида кремния до 100%. 2 з.п. ф-лы, 9 пр.

 

Заявляемое изобретение относится к получению кремнийсодержащих материалов и касается разработки способа каталитического гидрирования тетрахлорида кремния для получения сырья, которое можно использовать в процессе получения полупроводникового кремния, с целью создания замкнутого цикла производства полупроводникового кремния.

Одним из наиболее перспективных направлений использования тетрахлорида кремния является превращение его в трихлорсилан и, возможно, в дихлорсилан, монохлорсилан и моносилан методом гидрирования с последующим возвратом продуктов в производство поликристаллического кремния.

Гидрирование тетрахлорида кремния с использованием катализаторов позволяет в значительной степени снизить энергоемкость конверсии тетрахлорида кремния, т.к. каталитическая реакция протекает при значительно низкой температуре по сравнению с традиционными способами гидрирования тетрахлорида кремния, например широко применяемым методом термического гидрирования тетрахлорида кремния.

Термическое гидрирование - это процесс восстановления тетрахлорида кремния при высоких температурах (1000-1300°С) при повышенном давлении в присутствии водорода (см., например, патент Японии №63008207, МКИ С01В 33/107, опубл. 14.01.1988).

Достоинством метода термического гидрирования является простота его реализации, а недостатком - высокое энергопотребление и низкая конверсия по исходному продукту - не более 30%, а значит, его высокая его себестоимость.

Известен способ восстановления тетрахлорида кремния в присутствии гидрида магния в органических растворителях при температуре 200-400°С, при этом в реакции участвуют переходные металлы в виде хлоридов титана и хрома, которые играют роль переносчиков атомов хлора за счет изменения валентности (см. патент США №4725419, МКИ С01В 33/04, опубл. 16.02.1988).

Гидрид магния, использующийся как катализатор, является хорошим гидрирующим агентом. Ведение процесса осуществляют в органических растворителях (например, бензол, антроцен и др.), в которых легко происходит нуклеофильное замещение атома водорода на атом хлора и восстановление хлорида магния до гидрида магния. Выход трихлорсилана по тетрахлориду кремния составляет 61-63 мол.%.

Известен способ, в котором восстановление тетрахлорида кремния ведут смесью хлоргидридов алюминия в сольватных системах на основе диметилового эфира, этиленгликоля, бензола или толуола (см. патент США №3926833, МКИ С01В 25/06, С01В 33/04, опубл. 16.12.1975).

Недостатком вышеописанных способов является использование органических растворителей, которые являются источником загрязнения целевого продукта примесями углеродсодержащих веществ, и использование гидридов металлов, которые, в свою очередь, являются взрывоопасными соединениями.

Достаточно много публикаций посвящено каталитическому гидрированию хлоридов кремния водородом. В качестве акцепторов хлора при этом используют алюминий, магний, железо, титан, гидрид титана, кремний и др.

Известен способ гидрирования тетрахлорида кремния водородом над гидридом титана или губчатым титаном при 250-400°С (см. патент Японии №50-17035, МКИ С01В 33/08, опубл. 18.06.1976). Выход трихлорсилана в смеси с дихлорсиланом, монохлорсиланом и силаном составляет 21 мас.%.

Недостатком этого способа является низкий выход продукта из-за того, что идет дезактивация катализатора при протекании побочной реакции с хлористым водородом.

Известен способ гидрирования тетрахлорида кремния водородом в присутствии кремния при использовании в качестве катализатора хлорида или бромида алюминия при температуре 350°С (см.патент США №2458703, МКИ С01В 33/04, опубл. 11.01.1949).

Недостатком этого способа является то, при температуре 350°С галогениды алюминия возгоняются, переходят в газовую фазу и загрязняют продукты реакции электроактивной примесью алюминия. Кроме того, за счет возгонки хлорида алюминия процесс гидрирования тетрахлорида кремния является периодическим и возогнанный хлорид алюминия надо возвращать в технологический цикл производства. По мере расходования трихлорида алюминия добавляют новую партию катализатора и процесс повторяют.

Известен способ каталитического гидродегалогенирования тетрахлорида кремния в трихлорсилан в присутствии водорода при температуре 600-900°С, в котором в качестве катализатора используют тонкоизмельченные переходные металлы или их соединения, выбранные из группы, состоящей из никеля, меди, железа, кобальта, молибдена, палладия, платины, рения, церия и лантана, способные образовывать силициды с элементарным кремнием или соединениями кремния (см. патент США №5716590, МКИ С01В 33/02, опубл. 10.02.1998). В присутствии кремния как упомянутые металлы, так и их соединения образуют силициды переходных металлов, которые и являются катализаторами способа конверсии тетрахлорида кремния в трихлорсилан. При указанной выше температуре 600-900°С происходит спекание частиц катализатора, что приводит к падению его активности, вплоть до полной дезактивизации катализатора.

Известен способ получения трихлорсилана гидрированием тетрахлорида кремния водородом при температуре 450-600°С, в котором катализатор смешивают с кремнием (см патент США №7056484, МКИ С01В 33/03, опубл. 12.02.2004). В качестве катализатора используют медь, и/или железо, или соединения меди и железа, например оксид меди (I), хлорид меди (I), или хлорид железа (II). Указывается также возможность вышеуказанные катализаторы смешивать с другими активными веществами, как хлоридами, бромидами или йодидами алюминия, ванадия и сурьмы. Выход трихлорсилана составляет 12%.

Известен способ каталитического гидрирования тетрахлорида кремния в присутствии водорода, в котором в качестве катализатора используют, по меньшей мере, один металл или одну соль металла, выбранного из элементов второй главной группы Периодической системы элементов при температуре в пределах от 300 до 1000°С (см. патент РФ №2371388, МКИ С01В 33/107, опубл. 27.10.2009).

В этом решении авторами упомянутого патента было обнаружено, что конверсия тетрахлорида кремния может быть достигнута простым и экономичным способом, если смесь тетрахлорсилана/водород пропускать через металл или соль металла, который представляет, по меньшей мере, один элемент второй главной группы Периодической системы элементов и образует стабильные хлориды металла в условиях реакции, а эту каталитическую реакцию, соответственно, осуществлять при температуре от 300 до 1000°С, предпочтительно, от 600 до 950°С, особенно, от 700 до 900°С. Выход трихлорсилана составляет не более 23%. Упомянутый способ выбран в качестве прототипа.

Задачей, на решение которой направлено заявляемое изобретение, является разработка энергосберегающего способа гидрировния тетрахлорида кремния за счет достаточно высокой конверсии по тетрахлориду кремния, порядка 75-90%, при достаточно низкой температуре реакции.

Эта задача решается за счет того, что в известном способе гидрирования тетрахлорида кремния водородом при использовании в качестве катализатора хлоридов металлов, согласно заявляемому изобретению, в качестве катализатора используют хлориды переходных металлов или их смеси, например хлорид никеля, хлорид меди и др., гидрирование ведут при температуре не ниже 200°C, а образующиеся продукты реакции на выходе из реактора охлаждают до температуры не выше 100°C.

В предпочтительном варианте гидрирование ведут при температуре 300-350°C, т.к. при этой температуре достигается наивысшая конверсия тетрахлорида кремния.

В предпочтительном варианте используют мелкодисперсный катализатор и/или нанесенный на пористый кремнистый носитель или носитель из диоксида кремния, т.к. при использовании катализатора на носителе для инициирования реакции можно использовать несколько меньшее количество катализатора.

В процессе синтеза из смеси продуктов удаляют образующиеся хлорсиланы, а непрореагировавшие тетрахлорид кремния и водород возвращают в технологический цикл. Таким образом конверсию тетрахлорида кремния можно доводить до 100%.

Новым в способе является то, что в качестве катализатора используют хлориды переходных металлов или их смеси, при этом гидрирование ведут при температуре не ниже 200°C, а образующиеся продукты реакции охлаждают до 100°C на выходе из реактора. Использование в качестве катализатора хлоридов переходных металлов или их смесей обеспечивают достаточно низкую температуру процесса, а также высокую степень конверсии по тетрахлориду кремния.

По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 75-90%.

Опытным путем было установлено, что достаточно высокий процент конверсии по тетрахлориду кремния происходит при температура не ниже 200°C и, как показали эксперименты, является существенной для того, чтобы данная реакция протекала с хорошей конверсией (порядка 75-90%) по тетрахлориду кремния. Ниже 200°C реакция не идет в силу того, что происходит сильная адсорбция исходных продуктов на катализаторе.

Опытным путем было также установлено, что охлаждение смеси продуктов реакции нужно вести до температуры, не выше 100°C. При этой температуре происходит резкое охлаждение продуктов реакции с образованием смеси хлорсиланов, а при температуре выше 100°C в продуктах реакции образуются хлористый водород и кремний.

Таким образом, упомянутые новые признаки являются существенными, т.к. каждый из них необходим, а вместе они достаточны для решения поставленной задачи - разработки энергосберегающего способа гидрировния тетрахлорида кремния за счет достаточно низкой температуры реакции, с достаточно высокой конверсией по тетрахлориду кремния, порядка 75-90%.

Как было упомянуто выше, при гидрировании тетрахлорида кремния в качестве катализатора используют тонкоизмельченные переходные металлы или их соединения, выбранные из группы, состоящей из никеля, меди, железа, кобальта, молибдена, палладия, платины, рения, церия и лантана, способные образовывать силициды с элементарным кремнием или соединениями кремния (см. патент США №5716590). В одном из примеров упомянутого источника показано использование в качестве катализатора хлорида никеля в присутствии с кремнием. Таким образом в качестве катализатора используют силицид никеля, а не хлорид никеля. В связи с тем, что хлорид никеля используют с кремнием, то образуется силицид никеля, который и является катализатором, при этом образование силицид никеля приводит к падению активности катализатора, вплоть до полной его дезактивации.

Пример 1. В реактор загружают 6 г хлорида никеля, который нагревают до 200°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3C; и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 75%.

Пример 2. В реактор загружают смесь 6 г хлорида меди, который нагревают до 350°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 80°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Продукты реакции разделяют ректификацией. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 80%.

Пример 3. В реактор загружают смесь 4 г хлорида никеля и 2 г хлорида меди (II), которые нагревают до 300°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 50°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Продукты реакции разделяют криофильтрацией при температурах замерзания соответствующих продуктов реакции. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 85%

Пример 4. На пористый носитель из диоксида кремния наносят 2 г смеси хлорида никеля и хлорида меди (II). Время контакта исходной газовой смеси с катализатором составляет 0,3 мин. Гидрировние тетрахлорида кремния протекает при температуре 200-350°C с последующим охлаждением до 50°С на выходе из реактора, с последующим разделением продуктов реакции мембранными методами. Конверсия по тетрахлориду кремния составляет 90%.

Пример 5. В реактор загружают 6 г хлорида железа, который нагревают до 300°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношение 4:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°С на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 78%.

Пример 6. В реактор загружают 5 г хлорида титана, который нагревают до 150°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношении 2:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°С на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 83%.

Пример 7. В реактор загружают смесь 4 г хлорида железа и 2 г хлорида титана (II), которые нагревают до 250°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношении 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 100°С на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH2Cl2, SiH3Cl и HCl. Продукты реакции разделяют криофильтрацией при температурах замерзания соответствующих продуктов реакции. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 90%.

Пример 8. В реактор загружают 5 г хлорида вольфрама, который нагревают до 300°C. После чего пропускают смесь водорода с тетрахлоридом кремния в соотношении 3:1 соответственно. Время контакта исходной газовой смеси с катализатором составляет 0,5 мин. При указанной температуре протекает реакция с образованием смеси продуктов, которые подвергаются охлаждению до 50°C на выходе из реактора. В результате реакции образуется смесь продуктов, состоящая из SiHCl3, SiH3Cl и HCl. Полученную смесь разделяют мембранным методом. По данным газохроматографического анализа, конверсия тетрахлорида кремния составляет 87%.

Пример 9. На пористый носитель из оксида алюминия наносят 3 г смеси хлорида вольфрама и хлорида титана. Время контакта исходной газовой смеси с катализатором составляет 0,1 мин. Гидрирование тетрахлорида кремния протекает при температуре 150-200°C с последующим охлаждением до 50°C на выходе из реактора, с последующим разделением продуктов реакции мембранными методами. Конверсия по тетрахлориду кремния составляет 90%.

Заявляемый способ является энергосберегающим, так как гидрирование тетрахлорида кремния протекает при температуре 200-350°C с конверсией по тетрахлориду кремния 75-90%, в то время как в прототипе гидрирование тетрахлорида кремния ведут при температуре 700-1000°C. В процессе синтеза из смеси продуктов удаляют образующиеся хлорсиланы, а непрореагировавшие тетрахлорид кремния и водород возвращают в технологический цикл. Таким образом конверсию тетрахлорида кремния можно доводить до 100%.

1. Способ каталитического гидрирования тетрахлорида кремния с последующим разделением продуктов реакции, отличающийся тем, что в качестве катализатора используют хлориды переходных металлов или их смеси, при этом гидрирование ведут при температуре не ниже 200°С, а образующиеся продукты реакции на выходе из реактора охлаждают до температуры не выше 100°C.

2. Способ по п.1, отличающийся тем, что гидрирование ведут при температуре 300-350°C.

3. Способ по п.1, отличающийся тем, что используют мелкодисперсный катализатор, и/или нанесенный на пористый кремнистый носитель, или носитель из диоксида кремния.



 

Похожие патенты:

Изобретение относится к способу получения димерных и/или тримерных соединений кремния, в частности галогенсодержащих соединений кремния. .

Изобретение относится к технологии неорганических соединений. .

Изобретение относится к технологии получения тетрафторида кремния, используемого в производстве чистого поликристаллического кремния, пригодного, например, для изготовления солнечных батарей.
Изобретение относится к способу производства тетрахлорсилана. .

Изобретение относится к технологии получения высокочистого трихлорсилана, применяемого в качестве источника кремния в технологиях микроэлектроники и наноэлектроники.
Изобретение относится к технологии получения хлоридов кремния, а именно к способам получения высокочистого трихлорсилана (ТХС) и может быть использовано в производстве полупроводникового кремния.
Изобретение относится к неорганической химии и может быть использовано в технологии получения поликристаллического кремния. .

Изобретение относится к установке, реактору и непрерывному способу получения высокочистого тетрахлорида кремния или высокочистого тетрахлорида германия посредством обработки подлежащих очистке тетрахлорида кремния или тетрахлорида германия, которые загрязнены, по меньшей мере, одним водородсодержащим соединением, при помощи холодной плазмы и последующей фракционной перегонки обработанной фазы.

Изобретение относится к области разработки экономически рентабельной технологии конверсии обедненного тетрафторида урана с получением окислов урана для длительного хранения или использования в быстрых реакторах, а также с попутным получением ценных фторсодержащих веществ.

Изобретение относится к области катализа. Описан катализатор дисмутирования содержащих водород и галоген соединений кремния, содержащий в качестве носителя диоксид кремния и/или цеолит и по меньшей мере один линейный, циклический, разветвленный и/или сшитый аминоалкилфункциональный силоксан и/или силанол, который в идеализированной форме соответствует общей формуле (II) (R 2 )[ − O − (R 4 )Si(A)] a R 3 ⋅ (HW) w     (II) в которой A означает аминоалкильный остаток -(CH2)3-N(R1)2 с одинаковыми или разными R1, означающими изобутил, н-бутил, трет-бутил и/или циклогексил, R2 независимо друг от друга означают водород, метил, этил, н-пропил, изопропил и/или Y, R3 и R4 независимо друг от друга означают гидрокси, метокси, этокси, н-пропокси, изопропокси, метил, этил, н-пропил, изопропил и/или -OY, причем Y означает материал носителя, HW означает кислоту, причем W означает галогенид, остаток кремниевой кислоты, сульфат и/или карбоксилат, с a≥1 в случае силанола, a≥2 в случае силоксана и w≥0. Описаны способ получения указанного выше катализатора, его использование в процессе дисмутирования и установка дисмутирования с его использованием. Технический результат - снижение экономических затрат процесса дисмутирования. 4 н. и 13 з.п. ф-лы, 1 ил., 2 табл., 7 пр.

Изобретение относится к области химии. Устройство 1 для производства трихлорсилана включает в себя печь 2 разложения, нагревательный элемент 8, нагревающий внутреннюю часть печи 2 разложения, трубу 3 подачи полихлорсилана и хлористого водорода во внутреннюю нижнюю часть печи 2 разложения, трубу 4 для отведения реакционного газа из верхней части реакционной камеры 13, расположенной между наружной периферийной поверхностью трубы 3 подачи сырья и внутренней периферийной поверхностью печи 2 разложения, ребро 14, которое направляет текучую смесь полихлорсилана и хлористого водорода к нижнему концу отверстия трубы 3 подачи сырья для перемешивания и подачи сырья вверх реакционной камеры. Изобретение позволяет получать трихлорсилан из полихлорсилана, полученного в процессе производства поликристаллического кремния, при производстве трихлорсилана или при процессе превращения. 2 н. и 5 з.п. ф-лы, 10 ил.

Изобретение относится к способу крекинга высококипящих полимеров для увеличения выхода и минимизации отходов в процессе получения трихлорсилана. Предложен способ крекинга полихлорсилана и/или полихлорсилоксана, включающий стадии а) получения смеси, содержащей полихлорсилан и/или полихлорсилоксан; б) удаления твердых частиц из этой смеси с получением чистой смеси; и в) рециркуляции полученной чистой смеси в дистилляционный аппарат, и крекинг полихлорсилана и/или полихлорсилоксана в дистилляционном аппарате с получением трихлорсилана, тетрахлорсилана или их комбинации. Технический результат - уменьшение отходов и увеличение выхода хлорсилановых мономеров в процессе получения трихлорсилана. 12 з.п. ф-лы, 1 ил.

Способ получения галогенированного полисилана как чистого соединения или смеси соединений с, по меньшей мере, одной прямой связью Si-Si, заместители которого состоят из галогена или из галогена и водорода, с атомным соотношением заместитель:кремний, по меньшей мере, 1:1, и почти не содержащего разветвленных цепей и циклов, включает реакцию галогенсилана с водородом в условиях образования плазменного разряда с плотностью энергии менее 10 Вт/см3. Изобретение позволяет получать галогенированные полисиланы с хорошей растворимостью и плавкостью. 5 н. и 12 з.п. ф-лы, 11 ил., 6 пр.

Изобретение может быть использовано для уменьшения содержания бора и алюминия в галогенсиланах технической чистоты. Способ непрерывного получения высокочистых галогенсиланов включает получение галогенсиланов технической чистоты, содержащих бор и алюминий, из металлургического кремния, смешивание полученных галогенсиланов с трифенилметилхлоридом в устройстве (2) для образования труднорастворимых комплексов и получение высокочистых галогенсиланов дистилляционным выделением комплексов в колонне (3). Изобретение позволяет получить высокочистые галогенсиланы, с остаточным количеством бора <5 мкг/кг. 3 н. и 7 з.п. ф-лы, 1 ил., 4 пр.

Изобретение может быть использовано в химической промышленности для получения высокочистого кремния. Способ включает этапы: получения трихлорсилана, получения моносилана посредством диспропорционирования трихлорсилана и термического разложения моносилана. Для получения трихлорсилана кремний реагирует с хлористым водородом в процессе гидрохлорирования. Параллельно получают реакционную смесь, содержащую трихлорсилан, в процессе конверсии тетрахлорида кремния, образующегося в качестве побочного продукта и взаимодействующего с кремнием и водородом. Система включает производственную установку для получения трихлорсилана, включающую по меньшей мере реактор для гидрохлорирования, реактор для конверсии, сборный резервуар для реакционной смеси, содержащей трихлорсилан, и сепаратор; установку для получения моносилана, включающую по меньшей мере реактор для диспропорционирования и сепаратор; и установку для термического разложения полученного моносилана, включающую по меньшей мере реактор для разложения моносилана. Установка для получения моносилана соединена с установкой для получения трихлорсилана с помощью обратного трубопровода. Изобретение позволяет оптимизировать процесс получения высокочистого кремния с повторным использованием и дальнейшей переработкой побочных продуктов. 2 н. и 34 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для уменьшения содержания бора и алюминия в галогенсиланах технической чистоты. Способ уменьшения содержания бора и/или алюминия в галогенсиланах технической чистоты включает стадии примешивания галогенсиланов к трифенилметилхлориду в аппарате (2) для образования труднорастворимых комплексов, перевода комплексов в узел разделения (3), включающий узел декантирования, узел центрифугирования, узел фильтрования и узел дистилляции, в котором происходит отделение комплексов посредством механического воздействия и выделение очищенных галогенсиланов. Изобретение позволяет получить высокочистые галогенсиланы с остаточным количеством бора 16-18 мкг/кг. 3 н. и 16 з.п. ф-лы, 1 ил., 1 табл., 4 пр.

Изобретение относится к способу получения трихлорсилана. Производят взаимодействия кремния с газообразным HCl при температуре между 250°С и 1100°С и абсолютном давлении 0,5-30 атм. Процесс может быть осуществлён в реакторе с псевдоожиженным слоем, в реакторе с перемешиваемым слоем или в реакторе со сплошным слоем. Кремний, подаваемый на взаимодействие, содержит 40-10000 ч./млн бария по массе и возможно 40-10000 ч./млн меди по массе. Изобретение обеспечивает увеличение селективности процесса получения трихлорсилана. 2 н. и 12 з.п. ф-лы, 4 ил., 2 табл., 4 пр.
Наверх