Способ получения апатита кальция

Изобретение относится к области синтеза материалов, используемых для изготовления технической и медицинской керамики, а также в качестве ионообменников. Способ включает растворение исходных компонентов: соединений кальция, метафосфата, хлорида в горячей воде. Затем полученную суспензию медленно нагревают до 300°С, после чего образовавшуюся композицию нагревают до 1050-1100°С. Далее выдерживают при этой температуре в течение 3-4 часов и образовавшийся мелкодисперсный порошок промывают водой до В качестве метафосфата используют гексаметафосфат натрия. Способ позволяет получать апатиты кальция с высоким выходом целевого продукта: гидроксилапатита, хлорапатита или карбонатзамещенного апатита с чистым фазовым составом в мелкодисперсной форме. 1 з.п. ф-лы, 1 табл., 5 пр.

 

Изобретение относится к области синтеза материалов, используемых для изготовления технической и медицинской керамики, а также в качестве ионообменников.

Синтез кальцийфосфатных соединений в системе CaO-P2O5-H2O (F, Cl) характеризуется зависимостью от условий реакции (среда, температура, концентрация, соотношение и т.п.) и большим количеством промежуточных соединений. Поэтому способы получения апатитов с чистым фазовым составом направлены на разработку условий реакции и последующей обработки для доведения материала до оптимального состава и дисперсности.

Известен способ гидротермального синтеза гидроксилапатита из пирофосфата и оксида кальция (J. Amer. Ceram. Soc. 1990, 73, N 6, 1803-1805). Соотношение исходных компонентов в смеси выбирают таким образом, чтобы соотношение Са/Р было равно 1,67. Синтез проводят в золотых ампулах диаметром 3 мм и длиной 40 мм при температуре 350-450°С в атмосфере азота под давлением 30-70МПа в течение 1-120 ч. Фазовый состав продукта контролируют рентгенофазовым анализом. Недостатком данного способа являются сложность и дороговизна, которые не позволяют организовать массовое производство продукта.

Известен способ получения гидроксилапатита смешиванием растворов диаммонийфосфата и нитрата кальция (J. Amer. Ceram. Soc. 1989, 72, N 8, 1476-1478). Смесь при барботировании аргоном выдерживали при рН11 в течение 48 ч при комнатной температуре. Недостатком данного способа является сложность технологии, что не позволяет достигнуть достаточной фазовой чистоты продукта, конечный продукт загрязнен побочными фазами СаНРO4, Са3(РO4)2, технология требует длительной отмывки от водорастворимых промежуточных продуктов реакции.

Также известен способ получения гидроксилапатита кальция со сферическими частицами, используемого в качестве насадки в хроматографических колонках (заявка Японии N 1234308, С01В 25/32 G01N 30/48, 19.09.89). Способ включает смешивание порошков дикальцийфосфата и карбоната кальция при молярном соотношении 3:2 и последующее прокаливание при 700-1400°С в атмосфере, содержащей пар. Способ не позволяет получить материал с достаточно чистым фазовым составом, продукт загрязнен исходными компонентами и, как правило, трикальцийфосфатом за счет недостаточного контакта смеси с парами воды. Недостатком данного способа является сложность в аппаратурном оформлении.

Известен способ получения гидроксилапатита приготовлением суспензии пирофосфата кальция, оксида кальция и хлорида кальция (заявка Японии N 63-1000007, С01В 25/32, 02.05.88). Молекулярное соотношение Са/Р в смеси составляет 1,3-1,9. Реакцию проводят в щелочной среде при 100°С с последующей прокалкой продукта. Недостатком данного способа является то, что гидроксилапатит содержит фазы, не соответствующие соотношению Са/Р 1,66.

Известен также способ получения гидроксилапатита путем смешивания дикальцийфосфата (СаНРO4·2H2O) и карбоната кальция с соблюдением соотношения Са/Р 1,4-1,75, измельчением и перемешиванием смеси в присутствии воды с последующей сушкой и прокаливанием продукта при 500-1350°С (заявка Японии N 63-66790, С04В 35/00, 38/00; А06L 27/00, 22.12.88). Недостатком данного способа является то, что гидроксилапатит содержит примесные фазы других фосфатов кальция.

Известен способ повышения фазовой чистоты гидроксилапатита кальция путем его обжига в восстановительной среде, содержащей водяные пары при изготовлении керамики (заявка Японии N 61-58422, С04В 35/00; А61С 8/00, 11.12.86). Недостатком данного способа является сложность в аппаратурном оформлении, большая чувствительность к условиям прокаливания (среда должна очень строго контролироваться, в противном случае появляются другие фазы фосфатов кальция).

Наиболее близким по технической сущности к заявляемому изобретению является способ синтеза в солевых расплавах гидроксилапатита кальция (Патент Украины №69746А, МПК7 С04В 35/22 - №20031110798; опубл. 15.09.2004). По этому способу СаСО3, Са(ОН)2, KРО3 и KСl+NaCl в эквимолярном соотношении растирали в ступке и смешивали. Из данной смеси прессовали таблетки, которые обжигали в алундовом тигле при 900°С в течение 2 часов. Образовавшийся спек измельчали и многократно промывали водой.

Недостатком прототипа является необходимость измельчения полученного спека, загрязнение конечного продукта побочными веществами, требующими длительной отмывки полученных апатитов от промежуточных продуктов.

Задачей заявляемого изобретения является получение апатита кальция с высоким выходом целевого продукта: гидроксилапатита, хлорапатита или карбонатзамещенного апатита с чистым фазовым составом в мелкодисперсной форме, пригодных для использования в качестве сырья для изготовления керамики и в качестве ионообменников.

Для достижения указанного технического результата предлагается способ, предусматривающий растворение порошка хлорида и гексаметафосфата натрия в выпарительной чашке, добавление соединения кальция, перемешивание и медленное нагревание образовавшейся суспензии в течение часа на плитке до 300°С, обжиг получившейся композиции в алундовом тигле в камерной печи до 1050-1100°С в течение 3-4 часов, последующее охлаждение и промывка водой до

Для получения карбонатзамещенного апатита исходные компоненты СаСО3, CaCl2 и Na6P6O18 вводятся в следующем соотношении: мас.ч. (3,2-3,4):1:2,8 соответственно.

Пример 1

7СаО+3СаСl2+Na6P6O18+H2O=Са10(РO4)6 (ОН)2+6NaCl

В фарфоровой чашке при 90-95°С растворили 33,1 г СаСl2 и 60,9 г Nа6Р6О18 в 300 мл дистиллированной воды. Добавили 39 г СаО, и образовавшуюся суспензию медленно в течение часа нагрели на плитке до 300°С. Получившуюся композицию переложили в алундовый тигель и обожгли в камерной печи при 1050°С с выдержкой 3 ч. Полученный порошок отмывали дистиллированной водой до рН~8. Выход продукта составил 87,3%.

Пример 2

7СаСО3+3CaCl2+Na6P6O18+H2O=Са10(РO4)6(ОН)2+6NaCl+7СO2

В фарфоровой чашке при 90-95°С растворили 33,1 г CaCl2 и 60,9 г Na6P6O18 в 300 мл дистиллированной воды. Добавили 69,7 г СаСО3, и образовавшуюся суспензию медленно в течение часа нагрели на плитке до 300°С. Получившуюся композицию переложили в алундовый тигель и обожгли в камерной печи при 1050°С с выдержкой 3 ч. Полученный порошок отмывали дистиллированной водой до рН~8. Выход продукта составил 86,8%.

Пример 3

6СаО+4CaCl2+Na6P6O18=2Са5(РO4)3Сl+6NaCl

В фарфоровой чашке при 90-95°С растворили 42,6 г CaCl2 и 58,7 г Na6P6O18 в 300 мл дистиллированной воды. Добавили 32,3 г СаО, и образовавшуюся суспензию медленно в течение часа нагрели на плитке до 300°С. Получившуюся композицию переложили в алундовый тигель и обожгли в камерной печи при 1050°С с выдержкой 3 ч. Полученный порошок отмывали дистиллированной водой до рН~8. Выход продукта составил 91,2%.

Пример 4

7СаСО3+2CaCl2+Na6P6O18+0,5Н2О=Са9(РO4)5СО3ОН+0,5Na4P2O7+4NaCl+6CO2

В фарфоровой чашке при 90-95°С растворили 24,3 г CaCl2 и 67,1 г Na6P6O18 в 300 мл дистиллированной воды. Добавили 76,7 г СаСО3, и образовавшуюся суспензию медленно в течение часа нагрели на плитке до 300°С. Получившуюся композицию переложили в алундовый тигель и обожгли в камерной печи при 1050°С с выдержкой 3 ч. Полученный порошок отмывали дистиллированной водой до рН~8. Получился карбонатзамещенный апатит. Выход продукта составил 85,1%.

Пример 5 по прототипу

3СаСО3+6СаО+6KРО3+Са(ОН)2=Са10(РO4)6(ОН)2+3K2СО3

В шаровой мельнице смешали 33,4 г СаО, 7,6 г Са(ОН)2, 70,4 г KРО3, 29,9 г СаСО3, 14,5 г NaCl и 18,5 г KCl. Из образовавшейся смеси отпрессовали таблетки, которые поместили в алундовый тигель и обожгли в камерной печи при 900°С с выдержкой 3 ч. Полученный спек измельчали в шаровой мельнице 1 ч, полученный порошок отмывали дистиллированной водой до рН~8. Выход продукта составил 79,6%.

В таблице приведены сводные параметры по примерам.

№ примера Выход основного продукта, % Время помола, мин Объем воды для отмывки до рН~8, л Дисперсность, мкм
1 87,3 - 3,5 1-2
2 86,8 - 3,5 1-2
3 91,2 - 3 2-3
4 85,1 - 4 1-2
5 79,6 60 6 3-4*
* после помола

Таким образом, заявляемый способ синтеза апатитов кальция позволяет достичь требуемую дисперсность основного продукта при отсутствии стадии помола, с более высоким, по сравнению с прототипом, выходом, при этом объем воды, необходимый для его отмывки от побочных растворимых продуктов, существенно меньше, чем у прототипа, что свидетельствует о достижении поставленной задачи. Достижение задачи подтверждается результатом рентгенофазового анализа - основного критерия чистоты продукта.

1. Способ получения апатита кальция, включающий смешивание исходных компонентов: соединений кальция, метафосфата, хлорида и высокотемпературный обжиг смеси, отличающийся тем, что в качестве метафосфата используют гексаметафосфат натрия, смесь исходных компонентов растворяют в горячей воде, полученную суспензию медленно нагревают до 300°С, после чего образовавшуюся композицию нагревают до 1050-1100°С, выдерживают при этой температуре в течение 3-4 ч и образовавшийся мелкодисперсный порошок промывают водой до рН~8.

2. Способ по п.1, отличающийся тем, что для получения карбонатзамещенного апатита исходные компоненты карбонат кальция, хлорид кальция и гексаметафосфат натрия вводят в следующем соотношении, мас.ч.: (3,2-3,4):1:2,8 соответственно.



 

Похожие патенты:
Изобретение относится к нефтегазовой промышленности, конкретно к производству проппантов. .

Изобретение относится к области технологии формованных керамических изделий и может быть использовано для изготовления керамических расклинивателей нефтяных и газовых скважин.

Изобретение относится к производству неформованных огнеупоров из клинкеров, содержащих СаО или смесь СаО и MgO, и может быть использовано для изготовления неформованных огнеупоров, применяемых в агрегатах для выплавки стали, сплавов, драгоценных металлов.

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении огнеупорных изделий для футеровки тепловых агрегатов с температурой эксплуатации до 1400oC.

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении огнеупорных изделий для футеровки металлургических агрегатов и печей для обжига магнезита, доломита и цемента.

Изобретение относится к сельскому хозяйству. .
Изобретение относится к технологии получения неорганических материалов, а именно к способу получения материала, используемого как составляющая зубных паст и порошков с профилактическим действием.

Изобретение относится к способам получения минеральных добавок для корма животных, а именно к производству дикальцийфосфата (кормового преципитата). .
Изобретение относится к способам получения наноразмерных высокочистых порошков гидроксиапатита (ГАП), который может быть использован для производства сорбентов, медицинских материалов, например, стимулирующих восстановление дефектов костной ткани, для формирования зубных пломб, зубных паст.
Изобретение относится к области переработки фосфатного сырья и может быть использовано в технологии минеральных удобрений, кормовых и пищевых фосфатов. .

Изобретение относится к области химической технологии, а именно к получению новых сверхпроводящих соединений в области высоких давлений от 17 ГПа до 160 ГПа. .

Изобретение относится к области неорганической химии. .

Изобретение относится к области приготовления материалов для гигиены рта и зубов. .

Изобретение относится к способам получения минеральных добавок для корма животных и может быть использовано при получении дикальцийфосфата (кормового преципитата).
Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, являющихся компонентами лекарственных средств, и может быть использовано в стоматологии и хирургии.
Изобретение относится к химической и медицинской промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления в стоматологии имплантов, при протезировании, пломбировании зубов и др
Наверх