Способ селективного определения концентрации аммиака и его производных в газовой среде

Изобретение может быть использовано для медицинской диагностики, для экологического мониторинга в химической, нефтехимической, металлургической, холодильной, пищевой, электронной, авиакосмической и некоторых других областях промышленности. В способе селективного определения концентрации аммиака и его производных в газовой среде, включающем измерение электрического сопротивления полупроводникового сенсора, аммиак и его производные превращают в оксиды азота с помощью конвертера. Изобретение обеспечивает увеличение селективности и стабильности анализа. 3 ил.

 

Изобретение относится к области аналитического приборостроения, а именно к сенсорам концентрации газов, и предназначено для селективного определения концентрации аммиака и некоторых его производных (например, гидразина и несимметричного диметилгидразина), и может быть использовано для медицинской диагностики, для экологического мониторинга в химической, нефтехимической, металлургической, холодильной, пищевой, электронной, авиакосмической и некоторых других областях промышленности.

Известен способ определения концентрации аммиака с помощью полупроводникового металлоксидного сенсора, при котором аналитическим сигналом является изменение значения электрического сопротивления сенсора (Б.Эггинс. Химические и биологические сенсоры. М., Техносфера, 2005. С.66-67).

Главный недостаток известного способа - недостаточная селективность. Все газы-восстановители (аммиак, угарный газ, водород, метан, сероводород, этанол и так далее) уменьшают сопротивление полупроводника n-типа в результате хемосорбции (донорный сигнал) и поэтому трудноотличимы при использовании полупроводниковых сенсоров. Второй недостаток данного способа - недостаточная стабильность, вызванная дрейфом электрического сопротивления сенсора.

Задача изобретения - разработка способа определения аммиака и его производных с использованием полупроводниковых сенсоров.

Технический результат от использования изобретения - увеличение селективности и стабильности анализа.

Технический результата достигается тем, что в способе определения концентрации аммиака и его производных в газовой среде, включающем измерение электрического сопротивления полупроводникового сенсора, аммиак и/или его производные превращают в оксиды азота с помощью конвертера.

Сущность способа заключается в следующем. Полупроводниковый сенсор находится в одной газовой камере вместе с конвертером - устройством, способным каталитически окислять аммиак или его производные:

4NH3+5O2→4NO+6H2O,

2NO+O2→2NO2.

Оксиды азота, в отличие от аммиака, не уменьшают, а увеличивают сопротивление полупроводника n-типа в результате хемосорбции (акцепторный сигнал).

В качестве конвертера может быть использована, например, подогреваемая трубка, наполненная катализатором, или подогреваемая пластинка с нанесенным на нее слоем катализатора. Конвертер может работать в стационарном режиме (то есть непрерывно находиться при температуре, обеспечивающей каталитическое превращение) или в нестационарном режиме (температура конвертера, обеспечивающая каталитическое превращение, сменяется температурой, при которой каталитическое превращение не протекает).

На фиг.1 изображена схема устройства для селективного определения концентрации аммиака и его производных в газовой среде; на фиг.2 показаны результаты измерений электрического сопротивления газового сенсора от времени; на фиг.3 показана градуировочная кривая - зависимость отклика газового сенсора от концентрации аммиака.

Пример осуществления способа.

Способ селективного определения концентрации аммиака и его производных в воздухе был реализован в устройстве, включающем полупроводниковый сенсор 1 и конвертер 2, которые находятся в одной камере 3, связанной с внешней средой через отверстие 4.

Использовался сенсор, обладающий повышенной чувствительностью к диоксиду азота и к аммиаку, имеющий состав 96% SnO2, 2% Sb, 2% La. Сенсор находится в стационарном температурном режиме (250°С). В качестве конвертера была использована диэлектрическая пластинка с нанесенным на нее слоем катализатора, имеющая встроенный нагревательный элемент. На поверхность пластинки нанесен слой катализатора, обладающий способностью превращать аммиак в оксиды азота (например, 96% SnO2, 3% Pd, 1% Pt). Конвертер находится в нестационарном температурном режиме, что обеспечивается включением и выключением тока на нагревательном элементе. При нагреве температура конвертера достигает 350°С. Исследуемая газовая среда попадает в камеру через отверстие.

На фиг.2 показана зависимость электрического сопротивления сенсора от времени на воздухе (кривая 1), при концентрации аммиака 4,5 ppm (кривая 2), концентрации аммиака 9 ppm (кривая 3). Стрелками показаны моменты включения и выключения тока на конвертере. При нагревании конвертера поступающий из атмосферы аммиак окисляется до оксидов азота, которые определяются сенсором как окислители, при этом электрическое сопротивление полупроводникового сенсора n-типа увеличивается (линии 2 и 3 на фиг.2). При охлаждении конвертера оксиды азота перестают вырабатываться, уходят из камеры через отверстие. Сопротивление сенсора понижается (линии 2 и 3 на фиг.2) вследствие ухода оксидов азота и поступления аммиака. Чередование повышения и понижения сопротивления сенсора соответственно при нагревании и при охлаждении конвертера является отличительной особенностью определения аммиака и его производных, что позволяет проводить их селективный анализ. Например, при анализе воздуха (линия 1 на фиг.2) нагревание конвертера приводит не к повышению сопротивления сенсора, а к его понижению.

Преимуществом данного метода является также возможность повышения чувствительности анализа, так как оксиды азота, и особенно диоксид азота, имеет более высокий отклик по сравнению с аммиаком при их определении полупроводниковыми сенсорами.

Преимуществом данного метода является повышение стабильности анализа, так как аналитический сигнал может определяться по отношению, по разности или по относительной разности между сопротивлением сенсора в момент охлаждения конвертера и в момент нагревания конвертера, а не по абсолютному значению электрического сопротивления. В этом случае сравнивают между собой донорный сигнал аммиака и акцепторный сигнал оксидов азота. Таким образом, влияние дрейфа электропроводности, существенное при измерении абсолютного значения электрического сопротивления, сводится к минимуму.

В качестве аналитического сигнала была использована относительная разность значений электрического сопротивления сенсора в различные моменты времени. Одно измерение сопротивления (R1) проводилось за 5 секунд до включения нагревателя на конвертере (момент включения нагревания показан стрелочкой на фиг.2). Второе измерение сопротивления (R2) проводилось спустя 15 секунд после включения нагревателя на конвертере. Моменты регистрации сопротивлений R1 и R2 показаны крестиками на фиг.2. Аналитический сигнал G определяли по формуле:

.

Концентрацию аммиака определяли по градуировочной кривой фиг.3.

Способ селективного определения концентрации аммиака и его производных в газовой среде, включающий измерение электрического сопротивления полупроводникового сенсора, отличающийся тем, что аммиак и его производные превращают в оксиды азота с помощью конвертера.



 

Похожие патенты:

Изобретение относится к исследованию свойств порошкообразных материалов по величине электропроводности или электросопротивления и может быть использовано для контроля качества материала в порошковой металлургии и пиротехнике.

Изобретение относится к области эксплуатации подземных и наземных металлических трубопроводов, а именно - к мониторингу их коррозионного состояния. .

Изобретение относится к измерительной технике, а именно к способам и средствам определения параметров газовой среды (температура, влажность, давление, расход, вакуум и т.п.).

Изобретение относится к измерительной технике, а именно к способам определения активности ионов водорода (показателя рН) в жидких средах. .

Изобретение относится к методам неразрушающего контроля и может быть использовано для диагностики объектов при сборке по параметрам их механических колебаний, например, серийных изделий устройств контроля схода подвижного состава (УКСПС).

Изобретение относится к области измерения электрофизических параметров жидкостей, а именно измерения электропроводности, диэлектрической проницаемости и тангенса угла потерь жидкостей, преимущественно электролитов в связи с изучением и контролем их состава и строения

Изобретение относится к методам анализа физических и химических свойств биологических тканей и материалов биологического происхождения путем регистрации электрохимических параметров и математической обработки полученных данных и может быть использовано в пищевой промышленности для аналитического контроля (диагностики) и оценки показателей качества и безопасности продуктов питания и сырья для их изготовления, а также в медицине для диагностики различных заболеваний и оценки степени патологических изменений в тканях и органах

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных редукторов и других изделий, подвергаемых наводороживанию в процессе производства и эксплуатации. Согласно изобретению для определения содержания водорода в изделиях из титана в слоях по глубине образца величину вихревого тока определяют на различных частотах, при этом на каждой частоте определяют максимальное значение вихревого тока в зависимости от углового расположения датчика, измеряют сопротивления R1 и R2 на частотах, соответствующих разности глубин a1 и a2, вычисляют электропроводность для заданной глубины ax=a2-a1, затем по градуировочной эталонной зависимости электропроводности от концентрации водорода в титане определяют искомое содержание водорода в слое по глубине титанового изделия (образца). Изобретение обеспечивает возможность определения содержания водорода в слоях насыщенного водородом титана, расположенных на разной глубине, и повышает точность определения содержания водорода. 4 ил., 3 табл.

Изобретение относится к измерительной технике, в частности к устройствам определения электрических свойств материалов, и может быть использовано для создания веществ, обладающих требуемыми зависимостями удельной электропроводности от давления, которые применяются, например, при оценке изменения во времени горного давления в породных массивах. Техническим результатом заявленного изобретения является возможность определения зависимости удельной электропроводности пластичного вещества. Технический результат достигается за счет возможности определения зависимости удельной электропроводности пластичного вещества от давления. Устройство включает диэлектрическую трубку, в один конец которой вставлена первая металлическая втулка с внутренней резьбой, в нее вкручен винт, а во второй ее конец вставлена вторая металлическая втулка с установленным на ней датчиком давления, подключенным кабелем к регистратору давления. Электродами являются первая и вторая металлические втулки, подключенные проводниками тока к регистратору сопротивления. Диэлектрическая трубка герметизирована. 2 з.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительной технике и предназначено для использования в нефтедобывающей промышленности для исследования пластов, определения их остаточной водонасыщенности, для оперативного контроля влажности на нефтепромысловых скважинах. Способ определения водонасыщенности керна и других форм связанной воды в материале керна включает приготовление образца из керна, экстракцию и высушивание образца, моделирование пластовых условий в образце керна, фильтрацию минерализованной воды через образец керна и последовательное измерение в процессе фильтрации промежуточных значений тока, проходящего через образец при подаче на него переменного напряжения, построение зависимости значения электрического сигнала от водонасыщенности образца керна, при этом дополнительно, согласно изобретению, перед измерениями керн изолируют тонкой диэлектрической оболочкой и помещают между электродами емкостной измерительной ячейки, а значения тока, проходящего через образец при различных значениях водонасыщенности (от 0 до 100%), определяют методом бесконтактной высокочастотной кондуктометрии, например методом нелинейного неуравновешенного моста, питаемого высокочастотным напряжением с частотой 2-10 МГц, на полученной зависимости значений электрического сигнала от водонасыщенности образца керна выделяют три области с различными значениями крутизны подъема графика с ростом водонасыщенности, а границы энергетически различных категорий связанной воды в керне, в том числе остаточной водонасыщенности, определяют как точки перегиба между упомянутыми областями с различными значениями крутизны сигнала. Изобретение обеспечивает повышение точности измерений и упрощение процесса определения остаточной водонасыщенности керна с одновременным расширением области применения разрабатываемого способа, в частности и других форм связанной воды в материале керна. 1 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в системах контроля водно-химического режима для тепловой, атомной и промышленной энергетики. Cпособ определения концентрации компонентов смеси высокоразбавленных сильных электролитов включает одновременное измерение удельной электропроводности и температуры анализируемого раствора при разных температурах в количестве, равном количеству компонентов раствора, решение системы уравнений электропроводности в количестве, равном числу измерений, каждое из которых имеет определенный вид, с определением при решении уравнений значений удельной электропроводности при температуре 18°С для каждого из компонентов смеси и нахождение по известным (справочным) данным соответствующей им концентрации. Изобретение обеспечивает упрощение процесса за счет непосредственного определения концентрации каждого компонента, входящего в состав раствора. 1 пр.,1 ил.

Изобретение относится к способу и системе автоматизированного контроля процессов в первичных и вторичных отстойниках или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства. Технический результат заключается в повышении эффективности автоматизированного контроля отстойников сточных вод. Система содержит совокупность первичных преобразователей емкостного типа для измерения электрической емкости (диэлектрической проницаемости) и электрического сопротивления (удельной электропроводности), а также температуры, размещаемых на подвижном оборудовании, расположенном внутри отстойника, совокупность вторичных преобразователей, соединенных с первичными преобразователями, подающих на первичные преобразователи сигналы воздействия заданных частоты и амплитуды и получающих ответные мгновенные значение напряжения и тока первичных преобразователей для последующей обработки, программируемое устройство или автоматизированное рабочее место контроля, подключенное к вторичным преобразователям по проводному или беспроводному каналу связи, с функциями сбора, обработки и хранения информации, включая контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени или относительно конструкции отстойника и формирование итогового прогноза уровня или свойств для осадка или ила. 2 н. и 10 з.п. ф-лы, 1 ил.

Способ неинвазивного контроля содержания метаболитов в крови, включающий многократное измерение с помощью матрицы датчиков показаний электромагнитного импеданса в эпидермальном слое пациента и в одном из слоев, включающих кожный слой или подкожный слой пациента, пока разность между показаниями не превысит пороговую величину; вычисление величины импеданса, отображающей указанную разность, с использованием модели эквивалентной схемы и данных индивидуального поправочного коэффициента, характерных для физиологической характеристики пациента; и определение уровня содержания метаболитов в крови пациента на основании величины импеданса и алгоритма определения уровня содержания метаболитов в крови, в котором данные уровня содержания метаболитов в крови сопоставляются с соответствующим значением данных электромагнитного импеданса пациента. Также предложена система контроля уровня содержания по меньшей мере одного из веществ: глюкозы, электролита или искомого вещества. Изобретение обеспечивает возможность без чрезмерного экспериментирования легко адаптировать его для контроля содержания метаболитов в крови пациента. 2 н. и 15 з.п. ф-лы, 14 ил.

Использование: для обнаружения утечки гексафторида урана и/или фтористого водорода. Сущность изобретения заключается в том, что детектор состоит из цилиндрической диэлектрической подложки, слоя электропроводного лакокрасочного материала с диспергированным порошкообразным графитовым наполнителем, нанесенного на диэлектрическую подложку, электрических контактов и электропроводов для подключения источника постоянного тока к слою электропроводного лакокрасочного покрытия. Технический результат: обеспечение возможности снизить время обнаружения гексафторида урана и/или фтористого водорода. 2 н. и 6 з.п. ф-лы, 1 ил., 6 табл.
Наверх