Способ слежения за подвижным объектом



 


Владельцы патента RU 2473934:

Малецкий Олег Михайлович (RU)
Бытьев Алексей Вячеславович (RU)
Круглов Андрей Алексеевич (RU)
Ткаченко Наталия Владимировна (RU)
Головань Михаил Витальевич (RU)
Кириченко Александр Александрович (RU)
Ткаченко Владимир Иванович (RU)
Черкасов Владислав Николаевич (RU)
Шульга Сергей Владимирович (RU)
Краснянчук Николай Алексеевич (RU)

Изобретение относится к способам управления, а более конкретно к способам слежения за подвижным объектом. Техническим результатом является повышение помехоустойчивости, точности визирования и слежения за подвижным объектом. Изобретение включает определение и установку исходных размеров поля зрения визирного устройства, совмещение его с объектом слежения и удержание в таком положении в течение заданного времени и отличается тем, что формируют стабилизированную линию визирования и юстируют ее в исходном состоянии с оптической осью визирного устройства прибора слежения, определяют направление и величину угловой скорости ухода стабилизированной линии визирования, перемещают ее с этой же скоростью в противоположном направлении, совмещают ее с точкой визирования на объекте слежения, при маневрировании визирного устройства измеряют угол его крена, угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения и перемещают ее в обратном направлении на этот же угол, при перемещении объекта слежения измеряют и запоминают направление и величину его угловой скорости ωо, определяют ее математическое ожидание ωо.мо и среднеквадратическое отклонение ωо.ско, автоматически перемещают линию визирования в направлении движения объекта слежения, подсвечивают визирный индекс, изменяют яркость и цвет его подсветки до оптимального контраста с объектом слежения, уменьшают поле зрения, а по истечении времени восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.

 

В настоящем описании и материалах заявки использованы только открытые источники информации.

Изобретение относится к способам повышения эффективности управления, а более конкретно к способам слежения за подвижным объектом.

От эффективности слежения за подвижным объектом и, прежде всего, точности его визирования зависит и эффективность соответствующих процессов управления. Например, при фотосъемках, киносъемках, телеуправлении, дальнометрировании, стрельбе, геодезических работах и др. Для решения ряда задач при передаче сигналов управления на объекты управления с помощью электромагнитных волн оптического диапазона (1013-1015 Гц), необходимо прежде всего решить задачу точного визирования объекта визирования. В настоящее время эта задача решается путем придания устройствам визирования приборов слежения такого положения, которое обеспечило бы точное совмещение линии визирования с объектом визирования (Новый энциклопедический словарь. Научное издательство «Большая Российская энциклопедия» - Издательство «Рипол Классик». 2000, с.188. Гриф - «несекретно»).

Известен, например, способ визирования и слежения за подвижным объектом, реализованный в комплексе вооружения (см., например, Руководство по материальной части и эксплуатации танка Т-62. - М.: Воениздат, 1968, с.195-210. Гриф - «несекретно»). В этом комплексе при стрельбе в обычных условиях с места по неподвижной цели слежение сводится к визированию и осуществляется путем совмещения точки визирования на цели с визирным индексом (прицельной маркой) в визирном устройстве прибора слежения (прицела), а изменение условий стрельбы учитывается перемещением визирного индекса (прицельной марки) на определенную угловую величину до выстрела. При этом возникает необходимое угловое рассогласование между линией визирования и вооружением (осью канала ствола орудия), что обеспечивает с одной стороны ввод поправки, а с другой - однообразие визирования. Этому способу визирования свойственны недостатки: линия визирования отклоняется от оптической оси визирного устройства, что сопровождается ухудшением видимости, снижением разрешающей способности оптической системы и быстрым нарастанием зрительной усталости наводчиков-операторов. Кроме того, при стрельбе в условиях, отличных от обычных (стрельба с ходу, по движущейся цели, стрельба при сильном боковом ветре и т.д.), приходится постоянно вводить изменяющуюся поправку в положение визирного индекса относительно объекта визирования. В этом случае снижается точность прицеливания, а вместе с этим резко падает и эффективность стрельбы.

Известен также способ слежения и визирования за подвижным объектом (см., например, «Танк Т-80Б». Техническое описание и инструкция по эксплуатации. Кн. 1. - М.: Воениздат, 1984, с.48-54, с.86. Гриф - «несекретно»), являющийся прототипом заявляемого. Он включает определение и установку исходных размеров поля зрения визирного устройства прибора слежения, совмещение его (поля зрения) с объектом слежения и визирования и удержание в таком положении в течение заданного времени.

В этом способе поправки на отклонение условий стрельбы от нормальных вводятся в положение вооружения по отношению к линии визирования, а не наоборот. Это обеспечивает однообразие при прицеливании, предотвращает ухудшение видимости и снижение разрешающей способности оптической системы, а вместе с этим способствует и улучшению эргономических условий при визировании.

Однако этот способ также имеет недостатки. Удерживать линию визирования на точке визирования необходимо более продолжительное время, чтобы обеспечить ввод в положение вооружения всех поправок (не менее 3 с.). При стрельбе управляемой ракетой на максимальную дальность линию визирования необходимо удерживать на точке визирования не менее 10 с. Это вызывает повышенную напряженность органов зрения обслуживающего персонала, что очень часто приводит к потере объекта визирования и слежения или визирного индекса в условиях действия пыледымовых и, особенно, световых помех. Кроме того, продолжительное визирование в условиях стабилизации поля зрения приводит (из-за его увода) к увеличению ошибки визирования. Поэтому эффективность способа снижается. Еще более она снижается, если визирование осуществляется с подвижного объекта, при маневрировании которого визирная линия, несмотря на ее стабилизацию по высоте и направлению, в плоскости крена отклоняется, поскольку в ней не стабилизирована. Отклонение это тем больше, чем больше угол возвышения линии визирования и угол крена визирного устройства. Если же объект визирования подвижен (бегущий спортсмен, движущаяся цель на поле боя и др.), то ошибки слежения могут увеличиться в разы и в существенной степени зависят от угловой скорости слежения за подвижным объектом.

Целью изобретения является улучшение условий, повышение помехоустойчивости и точности визирования и слежения за подвижным объектом.

Указанная цель достигается тем, что в известном способе слежения за подвижным объектом, включающем определение и установку исходных размеров поля зрения визирного устройства прибора слежения, совмещение его с объектом слежения и удержание в таком положении в течение заданного времени, формируют стабилизированную линию визирования и юстируют ее в исходном состоянии с оптической осью визирного устройства прибора слежения, определяют направление и величину угловой скорости ухода от оптической оси визирного устройства прибора слежения стабилизированной линии визирования, перемещают с этой же скоростью стабилизированную линию визирования в противоположном направлении, совмещают ее с точкой визирования на объекте слежения, при маневрировании визирного устройства прибора слежения измеряют угол его крена, угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения и перемещают ее в обратном направлении на этот же угол в заданное положение, при перемещении объекта слежения измеряют и запоминают направление и величину его угловой скорости ωo, определяют ее математическое ожидание ωo.мож и среднеквадратическое отклонение ωo.ско, автоматически перемещают линию визирования с угловой скоростью ωлвo.мож в направлении движения объекта слежения, подсвечивают визирный индекс, плавно изменяют яркость и цвет его подсветки до достижения им оптимального контраста с объектом слежения, уменьшают поле зрения до размера , где В - уменьшаемый угловой размер поля зрения визирного устройства прибора слежения, В0 - угловой размер объекта слежения, σв - среднеквадратическое значение ошибки визирования, σю - среднеквадратическое значение ошибки юстировки линии визирования с оптической осью визирного устройства, tи - время инерции системы «глаз - визирное устройство - прибор слежения», а по истечении времени t3+tи, где t3 - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.

Предложенный способ позволил устранить указанные недостатки. Использование предлагаемого способа происходит следующим образом. Предварительно, в исходном состоянии, формируют стабилизированную линию визирования (с помощью, как правило, гироскопического стабилизатора линии визирования (СЛВ)), юстируют ее с оптической осью визирного устройства прибора слежения. При этом устраняют появляющиеся ошибки юстировки, значение которых при каждом включении СЛВ является случайным. Определяют направление и величину угловой скорости ухода от оптической оси визирного устройства стабилизированной линии визирования. Для компенсации ухода СЛВ формируют соответствующий сигнал и перемещают ее с той же скоростью в противоположном направлении. Затем СЛВ совмещают с точкой визирования на объекте слежения, определяют и устанавливают необходимый размер поля зрения (как правило, угол поля зрения) визирного устройства.

Определение и выбор исходных размеров поля зрения зависят от типа визирного устройства. Если это оптический прибор, то основным размером будет угол поля зрения, изменяемый, как правило, плавно или дискретно в зависимости от необходимого увеличения, размеров объекта визирования (цели), скорости его движения, наличия помех в поле зрения и т.д. В процессе поиска объектов визирования и слежения (целей), до их обнаружения, размеры поля зрения, как правило, максимальны, что необходимо для сокращения времени поиска.

Если же поиск объектов визирования производится по экрану электронно-оптического устройства, то основными размерами поля зрения будут ширина и высота экрана. Совмещение линии визирования с точкой визирования производится с помощью визирного индекса (марки), съюстированного с оптической осью визирного устройства. Поэтому при совмещении линии визирования с объектом визирования и слежения одновременно происходит совмещение с ним и оптической оси визирного устройства, благодаря чему достигается увеличение разрешающей способности визирного устройства и видимости цели, уменьшается вероятность оптических искажений.

При маневрировании визирного устройства прибора слежения появляются отклонения визирной линии в плоскости крена, поскольку она не стабилизирована в этой плоскости. Отклонения эти тем больше, чем больше угол возвышения линии визирования. Поэтому измеряют угол крена визирного устройства и угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения в соответствии с выражением Ψ=φSinγ, где Ψ - угол отклонения линии визирования от заданного положения в плоскости крена, φ - угол возвышения линии визирования, γ - угол крена визирного устройства. Затем перемещают линию визирования в обратном направлении на этот же угол в заданное положение.

При перемещении объекта слежения с угловой скоростью измеряют и запоминают направление и величину этой скорости, автоматически перемещают в этом же направлении и с такой же угловой скоростью линию визирования. Это позволяет использовать запоминание скорости для обеспечения подачи на вход оператора разности между угловыми скоростями объекта слежения и линии визирования (Локк А. С. Управление снарядами. - М.: Госиздат физико-математической литературы, 1958, с.764-765 - «несекретно»), облегчить функции и существенно снизить напряженность оператора.

Для повышения контраста на фоне местности и объекта слежения визирного индекса его подсвечивают, изменяют яркость и цвет его подсветки до достижения им оптимального контраста и с объектом слежения, и фоном местности В наиболее ответственный момент (например, при слежении за объектом слежения при киносъемке, при стрельбе и др.) для уменьшения помех уменьшают поле зрения на заданное время визирования до , где В - уменьшаемый угловой размер поля зрения визирного устройства прибора слежения, В0 - угловой размер объекта визирования, σв - среднеквадратическое значение ошибки визирования, σю - среднеквадратическое значение ошибки юстировки линии визирования с оптической осью визирного устройства, tи - время инерции системы «глаз - визирное устройство - прибор слежения», а по истечении времени t3+tи, где t3 - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.

С уменьшением размеров поля зрения визирного устройства уменьшается вероятность попадания в него помех. Благодаря компенсации угловой скорости ухода стабилизированной линии визирования, позволившей значительно уменьшить ошибки визирования, такое уменьшение стало возможным практически до размеров объекта визирования. Однако из-за ошибок визирования и юстировки, а также из-за угловых ошибок слежения за подвижным объектом слежения такое уменьшение размеров поля зрения нецелесообразно из-за опасности выхода из него объекта визирования.

Уменьшение поля зрения может происходить либо по специальной команде наводчика, например, нажатием на введенную для этих целей в систему управления специальную кнопку, либо по совпадающей по времени штатной команде системы управления: команды на замер дальности, заряжание орудия и др. Если размеры поля зрения угловые, то информацию о размерах объекта визирования определяют после замера дальности до него. Информация о размерах типовых объектов визирования (целей) вводится в систему управления заблаговременно. Уменьшение размера поля зрения производится с помощью специально введенной в оптическую систему визирного устройства диафрагмы с регулируемым посредством специального привода осевым отверстием. Это обеспечивает снижение яркости фона и повышение четкости изображения цели (см., например, Бутиков Е.И. «Оптика», - М.: «Высшая школа», 1986, с.347-352 - «несекретно»). Кроме того, за счет снижения яркости фона обеспечивается увеличение контраста визирного индекса. Основное же значение уменьшения поля зрения заключается в экранировании пыледымовых и, прежде всего, световых помех. Все это обеспечивает повышение помехоустойчивости и точности визирования и слежения.

По истечении времени t3+tи, где t3 - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства.

Величину заданного времени определяет, как правило, соответствующий оператор (телевидения, киносъемки и др.). Что касается стрельбы по целям, то заданным временем считается время от момента совмещения линии визирования с объектом визирования до попадания снаряда (ракеты) в цель. Команда на восстановление размеров поля зрения может быть подана как самим оператором (наводчиком), так и автоматически системой управления на основании информации о дальности до цели и скорости полета снаряда (ракеты). Своевременное восстановление исходных размеров поля зрения необходимо для сохранения высокого уровня достоверности оценки результата выстрела и эффективной разведки последующих целей.

Предложенный способ слежения обеспечивает повышение помехоустойчивости и точности процессов визирования и слежения, что обеспечивается экранированием световых и пыледымовых помех, снижением яркости фона и повышением четкости изображения. Кроме того, при слежении за подвижным объектом угловые ошибки слежения практически не возникают и напряженность оператора не увеличивается (из-за автоматического придания линии визирования угловой скорости ωлво.мож, которая практически полностью компенсирует угловую скорость перемещения объекта слежения).

Экспериментальная оценка эффективности предложенного способа слежения подтвердила возможность существенного повышения точности визирования и слежения при стрельбе в сложных условиях (пестрый и яркий фон, быстрое изменение яркости фона и цели, наличие световых и пыледымовых помех в поле зрения визирного устройства, угловое перемещение объекта слежения и др.). Частость попадания при электронных стрельбах в условиях помех, полученная наводчиками с использованием предложенного способа, превысила (на 8-10%) частость попадания, полученную известным (см. прототип) способом слежения в аналогичных условиях. При визировании с подвижного объекта частость попадания возросла еще на 5%, а при слежении за подвижным объектом показатели не ухудшились.

Предложенный способ слежения может быть использован как в военных целях, так и в других областях науки и техники, например, при визировании объектов и слежении за ними на фоне звездного неба, в телевидении, кино, фотографии, геологии, навигации и др.

Способ слежения за подвижным объектом, включающий определение и установку исходных размеров поля зрения визирного устройства прибора слежения, совмещение его с объектом слежения и удержание в таком положении в течение заданного времени, отличающийся тем, что формируют стабилизированную линию визирования и юстируют ее в исходном состоянии с оптической осью визирного устройства прибора слежения, определяют направление и величину угловой скорости ухода от оптической оси визирного устройства прибора слежения стабилизированной линии визирования, перемещают с этой же скоростью стабилизированную линию визирования в противоположном направлении, совмещают ее с точкой визирования на объекте слежения, при маневрировании визирного устройства прибора слежения измеряют угол его крена, угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения и перемещают ее в обратном направлении на этот же угол в заданное положение, при перемещении объекта слежения измеряют и запоминают направление и величину его угловой скорости ωо, определяют ее математическое ожидание ωо.мож и среднеквадратическое отклонение ωо.ско, автоматически перемещают линию визирования с угловой скоростью ωлво.мож в направлении движения объекта слежения, подсвечивают визирный индекс, плавно изменяют яркость и цвет его подсветки до достижения им оптимального контраста с объектом слежения, уменьшают поле зрения до размера где В - уменьшаемый угловой размер поля зрения визирного устройства прибора слежения, В0 - угловой размер объекта слежения, σв - среднеквадратическое значение ошибки визирования, σю - среднеквадратическое значение ошибки юстировки линии визирования с оптической осью визирного устройства, tи - время инерции системы «глаз - визирное устройство - прибор слежения», а по истечении времени tз+tи, где tз - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению, связано со стабилизацией изображения наблюдаемых объектов в оптических приборах, работающих на подвижном основании, и предназначено для создания наблюдательных систем типа бинокля.

Световод // 2469364
Изобретение относится к световоду, который применяется в горелках газотурбинных установок. .

Изобретение относится к области оптического приборостроения, более конкретно - к устройствам наблюдения объектов и прицеливания, а также к устройствам для измерения расстояний до целей с помощью встроенного лазерного дальномера и для наведения управляемых ракет на цель по лазерному лучу.

Изобретение относится к оптическому приборостроению и может быть использовано, например, в наблюдательных и прицельных приборах с матрицами чувствительных элементов приемных устройств.

Изобретение относится к области конструирования оптических приборов, в частности к средствам наблюдения внутренних поверхностей полых нагретых тел. .

Изобретение относится к оптическому приборостроению и может быть использовано для прицеливания из стрелкового оружия. .

Изобретение относится к технике формирования изображений, в частности, к системам оптико-электронных приборов формирования и обработки инфракрасных изображений (ИК), в которых актуальна задача коррекции тепловизионного изображения, связанная с компенсацией неоднородности постоянной составляющей сигнала фоточувствительных элементов, и может быть использовано для разработки и создания тепловизионных систем и приборов различного назначения с матричными фотоприемными устройствами (МФПУ).

Изобретение относится к военной технике, а именно к обеспечению надежности действий человека-оператора, отрабатывающего в быстром темпе зрительные изображения боевой фоноцелевой обстановки и сетки прицельного устройства, наблюдаемые им одновременно через окуляр визирного канала пускового устройства (ПУ), в совокупности с его сенсомоторными действиями в процессе наведения на цель ПТРК в условиях витального стресса (угроза жизни в боевых условиях) (см

Изобретение относится к оптическому приборостроению, а именно - к оптическим прицелам, используемым для ведения стрельбы из стрелкового оружия

Изобретение относится к измерительным приборам неразрушающего контроля технологического оборудования атомных электростанций в условиях затрудненного доступа, в сильных радиационных полях, в жидких и воздушных средах, а именно для дистанционного визуального контроля реакторного пространства, внутренней поверхности технологических каналов, элементов графитовой кладки, подводных металлоконструкций транспортно-технологических емкостей, трубопроводов, сосудов, емкостей, полостей и т.п

Изобретение относится к способам повышения эффективности управления, а более конкретно к способам визирования

Изобретение относится к оптическому и оптико-электронному приборостроению и, в частности, к наблюдательным приборам для тепловизионного и ночного наблюдения

Изобретение относится к приборам неразрушающего контроля технологического оборудования атомных электростанций в условиях затрудненного доступа, в сильных радиационных полях, в жидких и воздушных средах, а именно для дистанционного визуального контроля реакторного пространства, внутренней поверхности технологических каналов, элементов графитовой кладки, подводных металлоконструкций транспортно-технологических емкостей, трубопроводов, сосудов, емкостей, полостей и т.п., а также для наблюдения за технологическими операциями в бассейнах выдержки топлива, технологических шахтах, хранилищах радиоактивных отходов

Изобретение относится к оптическому приборостроению, в частности к оптико-электронным приборам для обнаружения источников излучения, и может быть использовано для создания систем, работающих в различных спектральных диапазонах

Изобретение относится к области аппаратуры, применяемой для астрофизических исследований, и может быть использовано при наблюдении за звездным небом с помощью телескопа

Изобретение относится к оптическому приборостроению, а именно к оптическим прицелам, используемым для ведения стрельбы из стрелкового оружия
Наверх