Двадцатичетырехпульсный преобразователь



Двадцатичетырехпульсный преобразователь
Двадцатичетырехпульсный преобразователь

 


Владельцы патента RU 2474034:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") (RU)

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока для станков для повышения их быстродействия, для питания электроподвижного транспорта и для питания электрохимических производств. Двадцатичетырехпульсный преобразователь содержит два трехфазных трансформатора, катушки вторичных обмоток всех фаз которого имеют отводы от половины витков и соединены в один контур в виде «двенадцатиугольника», напряжения между вершинами которого образуют двенадцатифазную систему напряжений, а вентили соединены в две группы - анодную и катодную. В анодной группе вентилей аноды соединены в один узел, представляющий собой один полюс на стороне постоянного тока, а в катодной группе вентилей катоды соединены в другой узел, представляющий другой полюс на стороне постоянного тока. Каждый вентиль анодной группы своим катодом соединен с одной вершиной «двенадцатиугольника» вторичных обмоток, а каждый вентиль катодной группы своим анодом подсоединен к средней точке одной из катушек вторичных обмоток трансформатора. Техническим результатом является повышение КПД преобразователя, уменьшение габаритов, веса и стоимости. 2 ил.

 

Предлагаемое изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока на станках для повышения их быстродействия и в других исполнительных механизмах, а также на преобразовательных подстанциях для питания электрофицированных железных дорог и в электрометаллургической и химической промышленности для уменьшения величины пульсаций выпрямленного напряжения и сокращения содержания высших гармонических составляющих в токе, потребляемом из сети переменного тока.

Из известных двадцатичетырехпульсных преобразователей наиболее близким к предлагаемому является преобразователь, состоящий из двух трехфазных трансформаторов и четырех трехфазных вентильных мостов. Каждый трехфазный трансформатор имеет сетевую (первичную) обмотку и две одинаковые по мощности вентильные (вторичные) обмотки, одна из которых соединена по схеме «треугольник», а другая - по схеме «звезда». Линейные напряжения и линейные токи этих обмоток одинаковые, а фазные, из-за различия в схемах соединения обмоток, разные. Поэтому параметры вторичных обмоток разные: разное число витков и сечение провода обмоток. Это усложняет конструкцию трансформаторов и удорожает их производство.

Каждый трехфазный вентильный мост состоит из шести вентилей, из которых при работе преобразователя в каждом мосту работают по два вентиля - один из анодной и другой из катодной группы. Все четыре моста работают одновременно. Поэтому одновременно работают восемь вентилей.

Вентильные мосты в каждом из двух двенадцатифазных преобразователей соединяются между собой последовательно. В двадцатичетырехфазном преобразователе при соединении двух двенадцатифазных преобразователей для их совместной работы необходим реактор (патент РФ №2119711, Н02М 7/12, 1988).

Технической задачей заявленного решения является исключение реактора из схемы преобразователя и обеспечение уменьшения прямого тока вентилей при работе преобразователя, что в конечном итоге позволяет повысить КПД преобразователя, а также снизить его габариты, вес и стоимость.

Поставленная задача решается посредством того, что в двадцатичетырехпульсном преобразователе, содержащем два трехфазных трансформатора с двойным комплектом вторичных обмоток в каждом трансформаторе и вентили, согласно изобретению катушки вторичных обмоток всех фаз обоих трансформаторов соединены в один контур в виде «двенадцатиугольника» таким образом, что напряжения между «вершинами» «двенадцатиугольника», образованными узлами соединения вторичных обмоток трансформаторов, представляют двенадцатифазную систему напряжений, а вентили соединены в две группы - анодную и катодную, при этом в анодной группе вентилей аноды соединены в один узел, представляющий собой один полюс на стороне постоянного тока, а в катодной группе вентилей катоды соединены в другой узел, представляющий другой полюс на стороне постоянного тока, причем каждый вентиль анодной группы своим катодом соединен с одой вершиной «двенадцатиугольника» вторичных обмоток трансформаторов, а каждый вентиль катодной группы своим анодом подсоединен к средней точке одной из вторичных обмоток трансформаторов.

Предлагаемое изобретение поясняется чертежами, где:

на фиг.1 представлена схема двадцатичетырехфазного преобразователя напряжения;

на фиг.2 представлена векторная диаграмма потенциалов на вентилях.

Двадцатичетырехпульсный преобразователь состоит из двух трехфазных трехобмоточных трансформаторов с двумя комплектами вторичных обмоток. Три катушки первичной обмотки одного трансформатора 1, 2 и 3 соединяются по схеме «звезда» и подключаются к проводам трехфазной сети 1, 2 и 3. Катушки первичной обмотки другого трансформатора 4, 5 и 6 соединяются по схеме «треугольника» и подключаются к той же сети. Катушки вторичных обмоток первого трансформатора 7, 8, 9, 10, 11 и 12 и второго трансформатора 13, 14, 15, 16, 17 и 18 соединяются между собой в один замкнутый контур, формируя двенадцатиугольник, каждой стороной которого является одна из катушек вторичных обмоток трансформаторов, а вершинами являются узлы, соединяющие каждую пару катушек вторичных обмоток трансформаторов. Одноименные зажимы (начала) всех катушек помечены знаком «звездочка» (*). При этом начало катушки 7 вторичной обмотки первого трансформатора соединяется с концом первой катушки 13 вторичной обмотки второго трансформатора, а начало катушки 13 соединяется с началом катушки 12, конец катушки 12 - с началом катушки 16, конец катушки 16 - с концом катушки 9, начало катушки 9 - с концом катушки 17, начало катушки 17 - с началом катушки 8, конец катушки 8 - с началом катушки 14, конец катушки 14 - с концом катушки 11, начало катушки 11 - с концом катушки 15, начало катушки 15 - с началом катушки 10, конец катушки 10 - с началом катушки 18, конец катушки 18 - с концом катушки 7, замыкая контур вторичных обмоток трансформаторов.

Вентили преобразователя образуют две группы: анодную и катодную. В анодной группе вентилей в один узел соединены аноды шести вентилей, в катодной группе в один узел соединены катоды шести вентилей. Вторые электроды вентилей каждой из двух групп подсоединяются к однотипным точкам контура вторичных обмоток. В анодной группе вентилей катоды каждого вентиля подсоединяются к одной из вершин «двенадцатиугольника», а в катодной группе вентилей аноды каждого вентиля подсоединяются к одной из средних точек вторичных обмоток трансформатора.

Вентили анодной группы - 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, объединяясь своими анодами в один узел, создают один полюс постоянного напряжения преобразователя. Своими катодами они подсоединяются к однотипным точкам «двенадцатиугольника» - к узлам, являющимся вершинами «двенадцатиугольника».

Вентили катодной группы - 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, объединяясь своими анодами в один узел, создают второй полюс постоянного напряжения преобразователя. Своими анодами они подсоединяются к другим однотипным точкам «двенадцатиугольника» - к средним точкам вторичных обмоток трансформаторов.

На фиг.2 представлена векторная диаграмма потенциалов на анодах вентилей катодной группы и на катодах вентилей анодной группы относительно центра «двенадцатиугольника» - точки О, потенциал которой принят равным нулю. Работа преобразователя в режиме неуправляемого выпрямителя (при использовании в качестве вентилей полупроводниковых диодов) происходит следующим образом: всегда открыты два вентиля - один из двенадцати вентилей катодной группы, потенциал на аноде которого наибольший, и один из двенадцати вентилей анодной группы, потенциал на катоде которого наименьший. Поэтому среднее значение прямого тока Iв, протекающего через один вентиль, равно одной двенадцатой части среднего значения тока нагрузки - Iо:Iв=1/12 Io, что меньше среднего значения прямого тока вентиля в прототипе в четыре раза. Поэтому потери напряжения и мощности при работе преобразователя меньше, чем аналогичные величины у прототипа в четыре раза и, следовательно, КПД предлагаемого преобразователя будет выше. Следует также учесть, что вентили для преобразователя выбираются по прямому току. Поэтому их габариты, вес и стоимость, определяясь меньшим в четыре раза током, будут меньше, чем у прототипа.

Рассмотрим теперь как изменяется во времени напряжение на выходе преобразователя.

Во времени потенциалы на вентилях изменяются по гармоническому закону, определяемому изменением проекции вектора потенциала вентиля на ось ординат Y (фиг.2) при вращении векторов против часовой стрелки с угловой скоростью ω1=2πf1, где f1 - частота питающего преобразователь напряжения.

Векторная диаграмма, изображенная на фиг.2, представлена для момента времени, когда вентиль анодной группы 34 меняет работавший до этого момента времени вентиль 35 анодной группы, так как его потенциал на катоде стал меньше потенциала на катоде вентиля 35. Это происходит при работающем вентиле катодной группы 28. Таким образом, напряжение на выходе выпрямителя, определявшееся проекцией на ось ординат Y вектора (28-35), меняется на равное ему напряжение, определяемое проекцией вектора (28-34) на ту же ось Y, и будет определяться этой проекцией до того момента времени, когда вентиль катодной группы 28 будет заменен другим следующим вентилем катодной группы 21 в тот момент времени, когда потенциал на его аноде станет больше потенциала на катоде вентиля 28.

Циклограмма работы вентилей катодной и анодной групп приводится в таблице.

Ni 1 2 3 4 5 6 7 8 9 10 11 12
Ti 0 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5 8,3 9,2
Ва 34 34 39 39 31 31 42 42 41 41 40 40
Bk 28 21 21 26 26 20 20 29 29 23 23 27
Ni 13 14 15 16 17 18 19 20 21 22 23 24
Ti 10 10,8 11,7 12,5 13,3 14,2 15,0 15,8 16,2 17,5 18,3 19,2
Ва 33 33 38 38 37 37 32 32 36 36 35 35
Bk 27 22 22 25 25 19 19 30 30 24 24 28
Ni - порядковый номер цикла; Ti - время начала цикла [с];
Ва - вентиль анодной группы; Bk - вентиль катодной группы.

Выразим величину среднего выпрямленного напряжения на выходе преобразователя через амплитуду напряжения на одной катушке вторичной обмотки трехфазного трансформатора двенадцатифазного преобразователя числа фаз - U2m (фиг.2).

В пределах одного интервала времени двадцатичетырехпульсного выпрямителя его напряжение на выходе изменяется по гармоническому закону. Обозначим амплитуду выходного напряжения - Uom. Она равна длине вектора (28-34) на векторной диаграмме и может быть найдена как гипотенуза прямоугольного треугольника (34-28-27) при катетах: (27-34)=0,5U2m и (27-28)=U2m/tg15°. Определяем: U0m=3,766U2m.

В пределах интервала времени - Т/48<t<Т/48 напряжение выходе неуправляемого выпрямителя изменяется по закону:

Uo(t)=Uom Cos ω1t.

Поэтому величина среднего выпрямленного напряжения на выходе выпрямителя - Uo определится путем деления определенного интеграла, взятого в пределах одного интервала времени от функции, представляющей изменение напряжения на выходе U0(t), на длительность этого интервала, равную Т/24:

Uo=3,756 U2m.

В момент времени, когда происходит изменение структуры схемы преобразователя из-за изменившихся потенциалов на вентилях выпрямителя, напряжение на выходе выпрямителя минимально. Определим его величину на примере перехода от первого ко второму временному интервалу, для которого построена векторная диаграмма напряжений. Минимальная величина выходного напряжения будет определяться длиной отрезка (27-28), равного удвоенному значению катета (0-27) прямоугольного треугольника (0-27-34), другой катет которого (27-34) равен половине напряжения на катушке вторичной обмотки трансформатора. Острый угол при вершине О этого треугольника определится как половина центрального угла, опирающегося на дугу, составляющую двенадцатую часть окружности - 30°. Таким образом, решая названный треугольник, получаем:

Uomin=U2m/tg15°=3,733U2m.

В итоге получаем, что выпрямленное напряжение пульсирует с двадцатичетырехкратной частотой в промежутке напряжений:

3,733U2m<Uo(t)<3,766U2m

при среднем значении Uo=3,756U2m с амплитудой ΔUm=0,0165U2m, что составляет меньше 0,44% от средней величины.

Анализ заявленного технического решения на соответствие требованиям условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, не известной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Свойства, регламентированные в заявленном соединении отдельными признаками, общеизвестны из уровня техники и не требуют дополнительных пояснений.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для использования при создании регулируемых электроприводов постоянного тока;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствуют требованиям условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Двадцатичетырехпульсный преобразователь, содержащий два трехфазных трансформатора с двойным комплектом вторичных обмоток и вентили, отличающийся тем, что катушки вторичных обмоток всех фаз трансформатора имеют отводы от половины витков и соединены в один контур в виде «двенадцатиугольника» таким образом, что напряжения между вершинами «двенадцатиугольника» образуют двенадцатифазную систему напряжений, а вентили соединены в две группы - анодную и катодную, при этом в анодной группе вентилей аноды соединены в один узел, представляющий собой один полюс на стороне постоянного тока, а в катодной группе вентилей катоды соединены в другой узел, представляющий другой полюс на стороне постоянного тока, причем каждый вентиль анодной группы своим катодом соединен, с одной вершиной «двенадцатиугольника» вторичных обмоток, а каждый вентиль катодной группы своим анодом подсоединен к средней точке одной из катушек вторичных обмоток трансформатора.



 

Похожие патенты:

Изобретение относится к электронной технике преобразования переменного напряжения в постоянное. .

Изобретение относится к области преобразовательной техники. .

Изобретение относится к области преобразовательной техники и может быть использовано на электроподвижном составе. .

Изобретение относится к устройству для преобразования частоты переменного тока с, по меньшей мере, одним фазным модулем, который имеет вывод переменного напряжения, и, по меньшей мере, один связанный с промежуточным контуром постоянного напряжения вывод постоянного напряжения, и с, по меньшей мере, одним накопителем энергии, причем между каждым выводом постоянного напряжения и каждым выводом переменного напряжения образована ветвь фазного модуля, и причем каждая ветвь фазного модуля имеет последовательное соединение из подмодулей, которое имеет, по меньшей мере, один силовой полупроводниковый прибор, причем предусмотрены полупроводниковые средства защиты в параллельном соединении с одним из силовых полупроводниковых приборов каждого подмодуля, и управляющий блок для управления полупроводниковыми средствами защиты, и накопитель(и) энергии предусмотрен(ы) для энергопитания управляющего блока.

Изобретение относится к преобразовательной технике и может быть использовано для управления двухкомплектными реверсивными (3-1)-фазными преобразователями на встречно-параллельных вентильных парах с двухсторонней проводимостью тока на принципах цифрового одноканального импульсно-фазового управления.

Изобретение относится к системам электроснабжения потребителей постоянного тока, осуществляющим преобразование электрической энергии переменного тока в энергию постоянного тока с помощью вентильных преобразователей.

Изобретение относится к преобразовательной технике и может быть использовано в установках электролиза алюминия, меди, цинка, хлора, водорода и др., в электротермии, на электрическом транспорте и в других отраслях, применяющих постоянный ток.

Изобретение относится к преобразовательной технике. .

Изобретение относится к области электротехники и может быть использовано при проектировании узлов управления инверторами, входящими в состав систем генерирования энергии переменного тока с жесткими требованиями по электромагнитной совместимости

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного и переменного тока для повышения быстродействия станков, а также на преобразовательных подстанциях для питания электрифицированных железных дорог, в электрометаллургической и химической промышленности для уменьшения пульсаций выпрямленного напряжения и уменьшения содержания высших гармонических составляющих в кривой переменного тока в питающей их трехфазной сети. Технический результат заключается в создании такой архитектуры преобразователя, которая позволит сократить расход активных материалов при замене трехфазного трансформатора автотрансформатором, за счет чего улучшатся массогабаритные показатели преобразователя и снизятся материальные затраты на его изготовление. Для этого заявленное устройство содержит трехфазный автотрансформатор, имеющий три катушки 1, 2, 3 первичной обмотки и шесть катушек 4, 5, 6, 7, 8, 9 вторичных обмоток, шесть соединенных между собой катушек 4, 5, 6, 7, 8, 9 вторичной обмотки имеют отпайки 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 от витков, катушка 1 первичной обмотки первой фазы своим концом подсоединена к узлу B, в котором соединяются катушки 6 и 8 вторичных обмоток второй фазы и третьей фазы, катушка 2 первичной обмотки второй фазы своим концом подсоединена к узлу D, в котором соединяются катушки 9 и 5 вторичных обмоток третьей фазы и первой фазы, катушка 3 первичной обмотки третьей фазы своим концом подсоединена к узлу F, в котором соединяются катушки 4 и 7 вторичных обмоток первой фазы и второй фазы, начало катушки 4 вторичной обмотки соединено с началом катушки 8 вторичной обмотки, образуя узел A, конец катушки 8 вторичной обмотки соединен с концом катушки 6 вторичной обмотки, образуя узел B, начало катушки 6 вторичной обмотки соединено с началом катушки 5 вторичной обмотки, образуя узел C, конец катушки 5 вторичной обмотки соединен с концом катушки 9 вторичной обмотки, образуя узел D, начало катушки 9 вторичной обмотки соединено с началом катушки 7 вторичной обмотки, образуя узел E, конец катушки 7 вторичной обмотки соединен с концом катушки 4 вторичной обмотки, образуя узел F, и замыкая контур катушек вторичных обмоток, образующих «шестиугольник» A, B, C, D, E, F, каждая катушка вторичной обмотки автотрансформатора является стороной «шестиугольника» A, B, C, D, E, F, преобразующего симметричную трехфазную систему напряжений в симметричную шестифазную систему напряжений. 2 ил.

Изобретение относится к области преобразовательной техники и может использоваться в системах управления тиристорными выпрямителями, выполненными по трехфазной нулевой схеме. Технический результат заключается в осуществлении стабильных синхронизирующих импульсов для систем управления тиристорного выпрямителя при наличии искажающих гармонических составляющих в питающей сети при использовании меньшего количества фильтрующих апериодических звеньев. Для этого в заявленное устройство введены вспомогательные шины А2, В2, С2, шесть сумматоров и два адаптивных апериодических фильтра первого порядка, обеспечивающие фильтрацию трехфазной системы напряжений при минимально необходимом количестве апериодических фильтрующих звеньев, основанное на обобщенном векторном представлении трехфазной последовательности. 4 ил.

Изобретение относится в основном к системам передачи электроэнергии, в частности к подстанции системы передачи электроэнергии. Технический результат заключается в разработке подстанции для работы при высоких напряжениях. Подстанция имеет преобразователь, содержащий первый набор последовательно подключенных преобразовательных вентильных элементов, предусмотренных между первым и вторым потенциалами, причем абсолютное значение второго потенциала выше, чем абсолютное значение первого потенциала, и второй набор преобразовательных вентильных элементов, содержащий, по меньшей мере, один преобразовательный вентильный элемент, предусмотренный между вторым и третьим потенциалом. Абсолютное значение третьего потенциала выше, чем абсолютное значение второго потенциала, а все преобразовательные вентильные элементы второго набора размещены внутри одного или более корпусов, размещенных на удлиненной изоляции мачтового типа. При этом потенциал конца изоляции мачтового типа, на котором размещены упомянутые корпуса, находится в диапазоне между вторым и третьим потенциалами, а другой конец упомянутой изоляции мачтового типа имеет потенциал «земли». 6 з.п. ф-лы, 5 ил.

Изобретение относится к электротехнике, а именно к преобразовательной технике. Способ управления многофазным выпрямительным агрегатом осуществляется путем плавного регулирования выпрямленного напряжения, которое осуществляется изменением выходного напряжения трехфазного автономного инвертора напряжения с широтно-импульсной модуляцией, подключенного зажимами переменного тока ко входу низкочастотного фильтра (Г-образного), выходные зажимы которого подключены к первичной обмотке трехфазного согласующего трансформатора, который вторичными фазными обмотками подключен последовательно с сетевой обмоткой преобразовательного трансформатора. Плавное регулирование выпрямленного напряжения осуществляется изменением фаз и амплитуд первых гармоник выходного напряжения трехфазного автономного инвертора напряжения с широтно-импульсной модуляцией. Технический результат состоит в упрощении выпрямительного агрегата и его цепей управления, с обеспечением возможности рекуперации электрической энергии из цепи постоянного тока в питающую сеть. 6 з.п. ф-лы, 2 ил.

Группа изобретений относится к электрическим тяговым системам транспортных средств. Выпрямительная установка возбуждения (ВУВ) электровоза состоит из выпрямительных диодов, IGBT транзисторного модуля и диода для поддержания непрерывности тока возбуждения. ВУВ подключена к трансформатору напряжения и работает на обмотки возбуждения двигателей. Цепи защиты IGBT модуля состоят из дополнительного маломощного трансформатора, первичная обмотка которого подключена к вторичной обмотке тягового трансформатора электровоза. Две вторичные обмотки подключены одним из выводов к питающей обмотке ВУВ, а другим выводом к коллектору IGBT модуля через последовательно включенные диод и дополнительный управляемый электронный ключ. Способ защиты заключается в том, что большая часть энергии индуктивностей рассеяния при выключении модуля отводится с его коллектора на вторичную обмотку дополнительного маломощного трансформатора. Включение дополнительных ключей происходит в зависимости от полупериода сетевого напряжения, в момент не позже выключения IGBT модуля, а выключение - в зависимости от длительности коммутационных перенапряжений. Техническим результатом является защита выпрямительной установки возбуждения от коммутационных перенапряжений. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к электрическим тяговым системам транспортных средств. Выпрямительная установка возбуждения (ВУВ) состоит из выпрямительных диодов, IGBT транзисторного модуля и диода для поддержания непрерывности тока возбуждения. ВУВ подключена к трансформатору напряжения и работает на обмотки возбуждения двигателей. Цепи защиты IGBT модуля состоят из двух дополнительных секций тягового трансформатора, расположенных на одном сердечнике и работающих в зависимости от полупериода сетевого напряжения. Секции одним выводом подключены к питающей обмотке ВУВ, а другим выводом - к коллектору IGBT модуля через последовательно включенные диод и дополнительный управляемый электронный ключ. Способ защиты заключается в том, что большая часть энергии индуктивностей рассеяния при выключении модуля отводится с его коллектора на дополнительные вторичные обмотки тягового трансформатора. Включение дополнительных ключей происходит в зависимости от полупериода сетевого напряжения, в момент не позже выключения IGBT модуля, а выключение - в зависимости от длительности коммутационных перенапряжений. Техническим результатом является защита выпрямительной установки возбуждения от коммутационных перенапряжений. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники, в частности к полупроводниковым преобразователям параметров электрической энергии и может быть использован в системах управления выпрямителями (В), построенными на базе трансформаторов с вращающимися магнитными полями (ТВМП). Предлагаемый способ ступенчато-хордового регулирования реализуется за счет геометрического суммирования напряжений отдельных секций вторичной круговой обмотки трансформатора с вращающимся магнитным полем с помощью полупроводникового коммутатора (ПК), переключающего отводы вторичной круговой n-секционной обмотки ТВМП в соответствии с новым алгоритмом. Выходы ПК - многоплечного выпрямительного моста подключаются к сборным шинам с которых запитывается нагрузка выпрямителя. На любой ступени регулирования на сборные шины выпрямителя подключаются отводы круговой обмотки ТВМП, разделенные постоянным для каждой ступени числом секций КО, в результате этого величина выпрямленного напряжения определяется геометрической суммой ЭДС группы секций, находящихся между отводами КО, которые подключаются полупроводниковым коммутатором на плюсовую и минусовую сборные шины выпрямителя, а каждая последующая пара отводов, подключаемых на сборные шины выпрямителя, имеет минимальный отрицательный фазовый сдвиг напряжения относительно предыдущей пары отводов. Технический результат - улучшение энергетических показателей. 1 табл., 5 ил.
Наверх