Способ диагностики рельсов

Изобретение относится к контрольно-измерительным устройствам для проверки состояния железнодорожных путей. Способ диагностики рельсов заключается в том, что на транспортное средство в известных относительных положениях устанавливают устройства: дефектоскопии, измерения неровностей и видеонаблюдения рельсов, перемещают транспортное средство вдоль рельсов, измеряют скорость его перемещения и текущее положение относительно рельсов, постоянно измеряют всеми устройствами состояние рельсов. Совмещают полученные результаты измерений так, чтобы они относились к одним и тем же поперечным сечениям рельсов и совместно анализируют. Оценивают текущее и перспективное состояние участков рельсов. В результате повышается достоверность оценки состояния рельсов и перспектив развития опасных участков. 5 ил.

 

Изобретение относится к контрольно-измерительным устройствам для проверки состояния железнодорожных путей и может быть использовано при мультисенсорном исследовании рельсового пути.

Под дефектами в данном случае будем понимать трещины, расслоения и другие, как правило, внутренние повреждения рельсов, обнаруживаемые ультразвуковыми, магнитными и другими приборами дефектоскопии. Под неровностями рельса будем понимать, как правило, внешние повреждения рельсового пути, выраженные в виде сколов головки, следов пробуксовок, искривления, статические и динамические изменения геометрии рельсов и т.п.Такие изменения обнаруживаются механическими, лазерными измерительными устройствами; акселерометрами и датчиками линейных перемещений, способными оценить поведение транспортного средства на рельсовом пути и (или) визуально.

Известны способы диагностики рельса [1], [2], [3], [4], [5], заключающиеся в измерении неровностей рельса акселерометрами ускорений транспортных средств (вагонов) при перемещении по рельсу, связанными с неровностями поверхности рельса и (или) геометрии рельса, и оценке его состояния на основе указанных измерений.

Известен более сложный способ диагностики рельса [6], заключающийся в различных вариантах совместного использования ультразвуковых и вихретоковых приборов, акселерометров, а также системы навигации.

Недостатком данного способа является несогласованность работы измерителей.

Наиболее близким к заявляемому является способ диагностики рельса [7], заключающийся в том, что на транспортное средство в известных относительных положениях устанавливают устройства: дефектоскопии, измерения неровностей рельса и видеонаблюдения, перемещают транспортное средство вдоль рельса, измеряют скорость его перемещения и текущее положение относительно рельса, постоянно измеряют всеми устройствами состояние рельса, для чего устройствами дефектоскопии и измерения неровностей рельса обнаруживают сигналы, свидетельствующие о подозрениях на дефекты и неровности, соответственно, анализируют указанные сигналы и принимают решение о степени опасности соответствующих участков рельса, вычисляют координаты этих участков по длине рельса.

Недостатком этого и всех предшествующих способов является то, что разнообразные измерительные приборы, установленные на транспортном средстве, рассматриваются по отдельности. Однако результаты измерений обладают единством по расположению, взаимовлиянию, скорости перемещения и объектам исследования. Учет этого единства при установке, организации измерений и анализе результатов позволит не только повысить качество диагностики рельсового пути, но и произвести прогноз состояния рельса. Кроме того, в способе [7] для дефектоскопии используются только средства измерения износа головок рельсов, что не достаточно для достоверной диагностики состояния рельсового пути.

Железные дороги являются сложными инженерно-техническими объектами с повышенной ответственностью за безопасность перевозок. Основным объектом контроля являются рельсы - на предмет наличия внутренних дефектов (трещин, расслоений, повреждений головок и т.п.), а также внешних свойств рельсов в виде изменения геометрии рельсового пути, локальных дефектов поверхности катания, сколов и т.п.

Для контроля рельсов используются ультразвуковые, магнитные, оптические, механические и другие методы неразрушающего контроля и соответствующие приборы. Каждый из измерительных приборов содержит средства измерения, обработки, хранения и отображения результатов и, как правило, используются независимо друг от друга. Контроль состояния рельсовых путей не должен существенно влиять на перевозки, что приводит к необходимости создания высокоскоростных, универсальных измерительных средств, осуществляющих всесторонний контроль состояния рельсов. Автоматические средства диагностики, как правило, не обеспечивают требуемый уровень достоверности, в результате чего возникают высокие вероятности «ложных тревог» и (или) пропуска дефекта. На сегодняшний день наибольшую достоверность обеспечивают автоматизированные способы, основанные на взаимодействии измерительных устройств с оператором. При этом возможны два способа оценки полученных результатов:

- Оперативный - позволяющий быстро обнаружить дефекты в процессе измерений и адекватно реагировать на критическое состояние рельсового пути.

- Лабораторный - предполагающий сохранение результатов измерений

рельсового пути и их последующую обработку.

Объединение множества измерительной аппаратуры в вагоне-дефектоскопе позволяет производить диагностику рельсового пути быстрее и дешевле. Периодичность измерения приборами должна выбираться из скорости движения транспортного средства для достижения требуемой разрешающей способности. Оперативный контроль состояния рельсового пути при наличии большого количества разнородной измерительной аппаратуры требует нескольких операторов. Обычно расшифровку результатов приходится проводить после окончания измерений.

Очевидно, что измерение состояния рельса на одном и том же участке различными средствами нельзя считать независимыми. Средства дефектоскопии показывают на наличие внутренних повреждений рельсов, а устройства определения неровностей рельса позволяют выявить места, в которых уже возникли статические деформации, а также участки, наиболее подверженные динамическим нагрузкам от проходящих рельсовых транспортных средств, способствующие развитию внутренних дефектов. Наконец, система видеонаблюдения позволяет визуально оценить состояние рельса на участке.

Задачей, решаемой заявляемым способом, является обеспечение диагностики рельсов с совместным использованием устройств дефектоскопии, измерения неровностей и видеонаблюдения с целью более достоверной оценки их состояния и перспектив развития опасных участков.

Для решения поставленной задачи в способ диагностики рельса, заключающемся в том, что на транспортное средство в известных относительных положениях устанавливают устройства: дефектоскопии, измерения неровностей и видеонаблюдения рельсов, перемещают транспортное средство вдоль рельсов, измеряют скорость его перемещения и текущее положение относительно рельсов, постоянно измеряют всеми устройствами состояние рельсов, для чего устройствами дефектоскопии и измерения неровностей рельсов обнаруживают сигналы, свидетельствующие о подозрениях на дефекты и неровности, соответственно, анализируют указанные сигналы и принимают решение о степени опасности соответствующих участков рельсов, вычисляют координаты этих участков по длине рельсов, периоды измерений состояния рельсов всеми указанными устройствами выбирают, исходя из скорости перемещения транспортного средства и требуемой разрешающей способности поиска, повышают чувствительность обнаружения сигналов, свидетельствующих о подозрениях на дефекты и неровности, задерживают мгновенные сигналы измерений всех указанных устройств с учетом их относительного положения и скорости перемещения транспортного средства так, чтобы они относились к одним и тем же поперечным сечениям рельсов, и сохраняют полученные результаты, совместно анализируют сигналы всех устройств на участках рельсов с подозрениями на дефект или неровности, оценивают перспективное состояние участков рельсов.

Существенными отличиями заявляемого способа по сравнению с прототипом являются следующие действия.

Периоды измерений состояния рельсов всеми указанными устройствами выбирают, исходя из скорости перемещения транспортного средства и требуемой разрешающей способности поиска, что позволяет сократить количество измерений и объем сохраняемой информации при малых скоростях перемещения транспортного средства без ухудшения качества работ.

В прототипе вопрос о периодичности измерений не рассматривается.

Повышение чувствительности обнаружения сигналов, свидетельствующих о подозрениях на дефекты и неровности, позволяет обратить внимание на дефекты и неровности, которые при раздельных измерениях считались бы «вариантом нормы», а при совместном анализе сигналов от всех устройств могут свидетельствовать о перспективе опасного развития событий.

В прототипе используют такую чувствительность, при которой каждое устройство может обнаружить соответствующий дефект или неровность по собственным критериям.

Задерживают мгновенные сигналы измерений всех указанных устройств с учетом их относительного положения и скорости перемещения транспортного средства так, чтобы они относились к одним и тем же поперечным сечениям рельсов. В результате указанной задержки результаты измерений всеми устройствами совмещаются пространственно по отношению к рельсу.

В прототипе результаты измерений принимают и сохраняют по отдельности.

Совместный анализ сигналов всех устройств на участках рельсов с подозрениями на дефект или неровности позволяет обнаружить участки рельса, на которых присутствуют внутренние дефекты и внешние неровности рельса, несущественные по отдельности, но вместе способные привести к опасным последствиям. Оценка перспективного состояния участков рельсов позволяет спрогнозировать развитие событий на участках рельсов.

В прототипе оценивается только текущее состояние рельса.

Заявляемый способ иллюстрируют следующие графические материалы.

Фиг.1 - Общий вид вагона-дефектоскопа, где:

1. Вагон-дефектоскоп.

2. Рельсы.

3. Ходовая тележка.

4. Акселерометры.

5. Ультразвуковой дефектоскоп.

6. Датчики ультразвукового дефектоскопа.

7. Одометр.

8. Навигационная система GPS.

9. Видеокамеры.

10. Сервер.

Фиг.2 - Ходовая тележка.

Фиг.3 - Структурная схема устройства.

Фиг.4 - Временные диаграммы при раздельном поиске дефектов.

Фиг.5 - Временные диаграммы при совмещенном поиске дефектов,

где:

a) сигналы акселерометра 41;

b) сигналы акселерометра 42;

c) сигналы УЗ дефектоскопа;

d) видеоизображение участка пути.

Рассмотрим простейший вариант реализации заявляемого способа. На транспортное средство вагон-дефектоскоп, фиг.1, 2, на известных относительных расстояниях устанавливают двухниточные устройства дефектоскопии, измерения неровностей и видеонаблюдения рельсов навигации, способные измерять (наблюдать) состояние обоих ниток рельсового пути. Места установки устройств выбирают, исходя из удобства размещения, конструктивных и других соображений. Все указанные устройства являются автономными, т.е. способны принимать и сохранять информацию, а устройства дефектоскопии и измерения неровностей и анализировать ее. При анализе сигналов в каждом из устройств обычно устанавливаются пороги обнаружения, т.е. такие уровни измеренного сигнала, при которых состояние рельса следует считать подозрительным или неудовлетворительным. Система навигации обеспечивает определение местоположения вагона дефектоскопа и скорость его перемещения. Все описанные устройства и система навигации соединены с сервером 10, фиг.3, который обеспечивает синхронизацию, объединение и отображение всей информации.

В качестве устройств дефектоскопии используются ультразвуковые дефектоскопы 5 с лыжей 6, на которой установлены электроакустические преобразователи [8]. Ультразвуковые дефектоскопы 5, как правило, выполняются в виде подвесных устройств, расположенных между колесными парами вагона-дефектоскопа. Эти устройства способны обнаруживать дефекты рельсового пути.

Устройства измерения неровностей рельса реализованы в виде четырех двухкоординатных акселерометров 41-44, расположенных на концах осей ходовой тележки 3. Каждый акселерометр измеряет ускорения, возникающие в вертикальной плоскости - на местах пробуксовки, стыках и т.п., а также курсовые ускорения (рыскание), возникающие из-за нарушения геометрии пути, сколов головки рельса и т.п. Таким образом, указанные акселерометры реагируют на локальные неровности рельсового пути.

Для определения текущих координат и скорости перемещения вагона-дефектоскопа, как правило, используются несколько устройств. Приборы глобальной системы навигации GPS 8 обеспечивают грубое позиционирование вагона-дефектоскопа. Сигналы от ультразвукового дефектоскопа позволяют обнаружить характерные участки рельса (стыки, стрелки и т.п.) и привязать систему навигации к точкам конкретного рельсового пути. Одометр 7, работающий «от колеса», обеспечивает точную привязку измерителей при перемещениях по длине рельса между характерными точками.

Для видеонаблюдения используются скоростные видеокамеры 9.

Структурная схема системы, реализующей заявляемый способ, приведена на фиг.3.

Навигационная система при помощи навигатора 8 определяет ориентировочное (с точностью до метров) положение и скорость перемещения вагона-дефектоскопа 1 относительно рельсового пути 2 и передает эту информацию на сервер 10. При этом в сервере 10, как правило, хранится «легенда» рельсового пути, полученная в предшествующих измерениях и содержащая информацию о характерных точках рельсов. При движении по рельсам устройство ультразвуковой дефектоскопии 5 обнаруживает такие точки, а сервер 10 корректирует текущее положение вагона дефектоскопа 1. Между характерными точками счисление пути и измерение скорости осуществляется одометром 7. Таким образом, в каждый момент времени с достаточной точностью становятся известными текущее положение и скорость перемещения вагона-дефектоскопа.

Знание скорости перемещения позволяет серверу 10 выполнять синхронизацию по времени подключенных устройств, задавая периоды дефектоскопии, измерений неровностей рельсов и съемки видеокамер, исходя из требований по разрешающей способности диагностики рельсов.

Для устройств дефектоскопии и измерений неровностей рельсов устанавливают сниженные пороги обнаружения, в результате чего количество обнаруженных подозрительных или дефектных участков возрастает.

Пространственная разнесенность по длине рельса 2 акселерометров 41 и 42, ультразвуковых преобразователей на лыже 6 и видеокамеры 9, фиг.1-2 приведет к тому, что, фиг.4, соответствующие сигналы а), b), с) и d) от них, относящиеся к одному и тому же поперечному сечению рельса, поступят в разные моменты времени T1-4. Для совместного анализа результаты измерений задерживают (сохраняют) в каждом из устройств. При обнаружении подозрительного участка рельса устройствами дефектоскопии 5 и (или) измерения неровностей 4 они сообщают об этом серверу 10. Зная скорость перемещения вагона-дефектоскопа 1 и расстояние между устройствами 41, 42, 6 и 9, в сервере 10 несложно рассчитать моменты времени T1-4. После прохождения этого участка видеокамерой 9 сервер 10 запрашивает и получает из соответствующих устройств информацию а), b), с) и d), относящуюся к одному и тому же поперечному сечению рельса, фиг.5. Такой способ позволяет совместно проанализировать полученную информацию. На фиг.5 видно, что источником сигналов на акселерометрах и УЗ дефектоскопах послужил рельсовый стык и опасности нет. А в других случаях наличие относительно небольших неровностей рельса в виде пробуксовки и незначительных трещин в головке рельса при рассмотрении по отдельности не является признаком опасности, а при совместном рассмотрении такой участок рельса может считаться подверженным дальнейшим разрушениям. Внешний осмотр этого участка рельса с использованием данных видеокамеры позволяет подтвердить или опровергнуть результаты приборных измерений. Например, нередко причиной обнаружения опасных участков техническими средствами является наличие посторонних предметов на или около рельсов. Таким образом, заявляемый способ диагностики рельса позволяет более достоверно оценивать не только текущее, но и перспективное состояние участков рельсов.

Источники информации

1. Патент GB 2443646.

2. Патент JP 2008100669.

3. Патент RU 65501.

4. Патент WO 2007007122.

5. Патент СН 1719208.

6. Патент AU 2008271145.

7. Патент RU 2066645.

8. Марков А.А. Шпагин Д.А. Ультразвуковая дефектоскопия рельсов. "Образование - Культура", 1999.

Способ диагностики рельсов, заключающийся в том, что на транспортное средство в известных относительных положениях устанавливают устройства: дефектоскопии, измерения неровностей и видеонаблюдения рельсов, перемещают транспортное средство вдоль рельсов, измеряют скорость его перемещения и текущее положение относительно рельсов, постоянно измеряют всеми устройствами состояние рельсов, для чего устройствами дефектоскопии и измерения неровностей рельсов обнаруживают сигналы, свидетельствующие о подозрениях на дефекты и неровности, соответственно, анализируют указанные сигналы и принимают решение о степени опасности соответствующих участков рельсов, вычисляют координаты этих участков по длине рельсов, отличающийся тем, что периоды измерений состояния рельсов всеми указанными устройствами выбирают, исходя из скорости перемещения транспортного средства и требуемой разрешающей способности поиска, повышают чувствительность обнаружения сигналов, свидетельствующих о подозрениях на дефекты и неровности, задерживают мгновенные сигналы измерений всех указанных устройств с учетом их относительного положения и скорости перемещения транспортного средства так, чтобы они относились к одним и тем же поперечным сечениям рельсов и сохраняют полученные результаты, совместно анализируют сигналы всех устройств на участках рельсов с подозрениями на дефект или неровности, оценивают перспективное состояние участков рельсов.



 

Похожие патенты:

Изобретение относится к путевому хозяйству и может быть использовано для измерения величины относительных перемещений участков рельсовых плетей бесстыкового пути при воздействии на них поездной нагрузки и температуры.

Изобретение относится к способам непрерывного контроля состояния железнодорожного бесстыкового пути при помощи путеизмерительных средств. .

Изобретение относится к области контроля состояния железнодорожного полотна. .

Изобретение относится к контрольно-измерительным устройствам для проверки состояния железнодорожного полотна и может быть использовано при комплексной диагностике рельсовых путей, например, в вагонах дефектоскопах.

Изобретение относится к области измерительной техники и может быть использовано для контроля геометрических размеров колеи железнодорожного пути. .

Изобретение относится к области железнодорожного транспорта и предназначено для контроля и оценки состояния железнодорожных путей. .

Изобретение относится к контрольно-измерительным устройствам для проверки состояния железнодорожного полотна и может быть использовано для обнаружения и оценки степени коррозионного повреждения подошв эксплуатируемых рельсов с использованием ультразвуковых методов исследования.

Изобретение относится к системе мониторинга напряжений рельсов. .

Изобретение относится к области измерительной техники и может быть использовано для автоматизированного контроля кривизны различных длинномерных объектов, например, относящихся к продукции прокатных и трубных производств, в технологическом потоке.

Изобретение относится к области дефектоскопии и неразрушающего контроля

Изобретение относится к области железнодорожного транспорта, а именно к способам определения неровностей и других дефектов рельсового пути

Изобретение относится к контролю безопасности рельсового пути и предназначено для дистанционного обнаружения отклонений его параметров от нормальных, вызванных нарушением структуры рельсов и появлением опасных объектов в полотне

Изобретение относится к области контроля состояния железнодорожного полотна, в частности к способам для измерения и контроля перемещения участков рельсовых плетей бесстыкового железнодорожного пути

Изобретение относится к железнодорожному транспорту. Способ оценки состояния рельсового пути заключается в том, что с применением диагностического вагона, оборудованного тензометрическими колесными парами, тензометрическими автосцепками, измерительными приборами, системами спутниковой навигации и беспроводной передачи данных, который устанавливают в состав грузового поезда, определяют состояние геометрии рельсового пути: радиусы кривых, положение рельсовых нитей в плане и профиле, ширину колеи и другие параметры с привязкой к электронной GPS карте рельсового пути, и связывают их с данными последних проездов вагона-путеизмерителя. Одновременно, с помощью тензометрических колесных пар проводят определение величин вертикальных и боковых сил, их соотношение во взаимодействии подвижного состава и рельсового пути, а также отдельного колеса с рельсом, а с помощью тензометрических автосцепок определяют продольно-динамические силы в подвижном составе, оценивают опасные для движения порожних вагонов сечения рельсового пути и выполняют привязку их к профилю рельсового пути. На основе результатов измерения геометрических параметров рельсового пути и скорости движения подвижного состава оценивают вероятность схода вследствие вкатывания гребня колеса на рельс; определяют участки пути, на которых могут иметь место значения коэффициента запаса устойчивости против схода с рельсов ниже нормативных значений и вырабатывают рекомендации по текущему содержанию пути на таких участках. В результате повышается достоверность и эффективность оценки состояния рельсового пути. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области диагностики железнодорожного пути. Система диагностирования железнодорожного пути содержит путеизмерительную тележку и связанные с ней сетевой центр и референцные станции. На тележке размещен контрольно-вычислительный комплекс, к которому подключены средства измерения геометрических параметров пути, приемник навигационных сигналов, блок индикации, блок памяти, приемопередающий блок, процессор, блок интерфейса связи, блок местного тревожного оповещения и акусто-электрические преобразователи. Каждая референцная станция включает в себя приемопередатчик навигационных сигналов. Сетевой центр состоит из сервера связи, блока обработки и управления и блока архивирования данных. Также в систему введена внешняя система оповещения путевых бригад. Решение направлено на повышение безопасности путевых бригад и мобильных средств диагностирования. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике. Устройство используют для контроля отклонения от прямолинейности поверхности боковой рабочей грани головки рельса в горизонтальной плоскости и поверхности катания головки рельса в вертикальной плоскости бесконтактным методом. Устройство автоматического контроля прямолинейности сварных стыков рельсов содержит корпус, механическую часть, торцевые панели, бесконтактные датчики базирования, датчики бесконтактного измерения расстояния до поверхности рельса и электронный блок. Механическая часть состоит из базирующих призм, закрытых с внешней стороны торцевыми панелями, которые имеют вырезы, соответствующие поверхностям, ответным контролируемым, между которыми установлены встроенные магниты. Каждая призма имеет опорные наконечники, контактирующие с контролируемыми поверхностями. Рядом с наконечниками расположены бесконтактные датчики базирования, сопряженные с электронным блоком. В центральной части корпуса между вспомогательными призмами расположены датчики бесконтактного измерения расстояния до поверхности рельса, сопряженные с электронным блоком, осуществляющим отображение отклонений от прямолинейности на аналоговых индикаторах и на графическом дисплее и хранение результатов отклонения в блоке памяти. Изобретение касается также способа использования этого устройства. В результате обеспечивается возможность получить наглядную и достоверную информацию, сокращается время, необходимое для контроля прямолинейности сварных стыков рельсов. 2 н.п. ф-лы, 10 ил.

Изобретение относится к способам и средствам неразрушающего контроля материалов и может быть использовано для диагностики рельсов и других протяженных объектов. Способ заключается в том, что магнитным дефектоскопом, установленным на вагоне-дефектоскопе, обследуют участок рельсового пути. Обнаруживают дефекты и конструктивные элементы (болтовые и сварные стыки рельсов, рельсовые металлические подкладки и т.п.), сигналы от которых и их положение сохраняют в диагностической карте. Используют данные о конструктивных элементах рельсового пути для навигации при ультразвуковой (УЗ) дефектоскопии того же участка рельсового пути. Подробно анализируют УЗ дефектоскопом объекты, обнаруженные магнитным дефектоскопом. Корректируют диагностическую карту по результатам дефектоскопии. В результате повышается точность, качество и скорость обнаружения дефектов рельсов. 1 з.п. ф-лы, 5 ил.

Система предназначена для измерения и контроля геометрических параметров железобетонных шпал, влияющих на прочность и надежность работы рельсового пути. На каркасе установлена линейная направляющая, с перемещаемой кареткой. На каретке закреплены лазерные профилометры с возможностью их перемещения для смены позиции конвейером. В качестве лазерных профилометров используют закрепленные на кронштейне лазерные сканеры с одним лазерным излучателем и двумя приемниками отраженного сигнала, которые установлены в лазерных сканерах. Приемники считывают отраженный сигнал одновременно одного и того же поперечного сечения железобетонной шпалы. На каретке закреплены как минимум два лазерных сканера для одновременного измерения двух и более железобетонных шпал. Достигается упрощение системы и процесса измерения и повышение производительности и эффективности работы системы за счет обеспечения возможности измерения параметров двух и более шпал одновременно. 2 ил.

Изобретение относится к устройствам для неразрушающего контроля и предназначено для определения координат датчика контроля в процессе поиска дефектов. Универсальное координатное устройство для ручного дефектоскопа размещено на объекте контроля и содержит, по крайней мере, один датчик контроля, выполнено в виде плоской рамы открытого типа, свободные концы которой установлены с возможностью поворота на опорных фиксаторах, закрепленных на объекте контроля. При этом на раме размещены два энкодера, каждый из которых снабжен тросиком, связанным с кассетодержателем, расположенным между энкодерами, в котором установлена кассета с размещенным в ней, по крайней мере, одним датчиком контроля с возможностью его перемещения по поверхности объекта контроля. В результате повышается достоверность контроля объекта, а также снижается трудоемкость использования координатного устройства. 5 ил.

Изобретение относится к контрольно-измерительным устройствам для проверки состояния железнодорожных путей

Наверх