Главный редуктор несущего винта

Изобретение относится к области авиастроения, в частности может быть использовано в главных редукторах несущих винтов вертолетов. Главный редуктор несущего винта содержит корпус с установленными в нем зубчатыми передачами и валами, входную ступень, расположенную под углом к валу несущего винта в продольной плоскости вертолета. Входная ступень оснащена муфтой свободного хода со встроенной крыльчаткой для откачки масла. Крыльчатка выполнена в виде плоского диска с двусторонним расположением по внешнему периметру плоскости диска профилированных лопаток. Зазор Δ между лопатками и стенками элементов корпуса муфты в плоскости вращения равен или меньше отношения ширины В рабочей части крыльчатки к высоте Н лопаток. В корпусе муфты имеется отводной канал масла, сопряженный с рабочей полостью крыльчатки. Профиль лопаток крыльчатки в плоскости диска выполнен дугами окружностей, а сопряжение отводного канала выполнено на диаметральном уровне рабочей полости крыльчатки. Достигается улучшение смазки муфты свободного хода с сохранением габаритов и веса редуктора. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к области авиастроения и может быть использовано в главных редукторах несущих винтов вертолетов.

Известны конструкции главных редукторов несущих винтов вертолетов, использующих в высокоскоростных входных зубчатых передачах муфты свободного хода (МСХ), обеспечивающих автоматическое отсоединение вала отказавшего двигателя, а также возможность разнорежимной работы двигателя (патенты РФ №2065381, №2263608). Известны конструкции МСХ, используемые в таких высокоскоростных приводах - авт.свид. №1666827, которые выполнены роликового типа фрикционного действия.

Наиболее близким по техническому решению является входная ступень главного редуктора ВР-2Б с МСХ роликового типа с групповым (сепараторным) прижимным устройством (см. «Механические передачи вертолетов» под ред. В.Н.Кестельмана, М., Машиностроение, 1983, стр.51, 78-79 и «Авиационные зубчатые передачи и редукторы» под ред. Э.Б.Булгакова, М., Машиностроение, 1981, стр.293, рис.15.4).

Как известно, смазка МСХ имеет свои особенности, в частности оказывает неодинаковое влияние на работоспособность МСХ в различные циклы движения ее звеньев (см. В.Ф.Мальцев «Роликовые механизмы свободного хода», М., Машиностроение, 1968, стр.405-407). Кроме того, для быстроходных механизмов с относительно высоким уровнем динамической нагрузки и большой амплитудой крутильных колебаний валов, какими является зубчатые передачи главного редуктора несущего винта вертолета, применяют, как правило, смазку под давлением. Поэтому каналы, подающие смазку в МСХ, должны, с одной стороны, обеспечить необходимый объем прокачки масла, а с другой стороны - исключить застой масла в полости МСХ, во избежание перегрева масла и откладывания продуктов износа и загрязнения.

Входная ступень известного главного редуктора несущего винта оснащена МСХ, содержащей корпус МСХ, ведущий и ведомый валы МСХ, установленные в подшипниковых узлах, сепаратор с роликами и пружинным прижимным устройством, ведомый вал МСХ посредством шлицов соединен с ведущим зубчатым (коническим) колесом входной ступени. В корпусе МСХ выполнен маслоканал, в котором смонтирована форсунка, для подачи масла в полость МСХ нагнетающим маслонасосом из поддона, уровень масла в котором ниже расположения корпуса МСХ на редукторе. Из полости МСХ масло самотеком стекает в поддон редуктора.

Такое техническое решение характерно для большинства входных ступеней главных редукторов несущих винтов, когда двигатели вертолетов установлены в подкапотных объемах вне фюзеляжа (как, например, на вертолете Ми-2 или Ка-226). Однако, при компоновочном решении вертолета, когда необходимо оптимизировать его аэродинамические обводы и снизить вредное аэродинамическое сопротивление, как например в случае вертолета MD 520N (см. А.Д.Маслов, О.А.Завалов, «Современные зарубежные гражданские вертолеты», М., изд. МАИ, 2007, стр.105-106) или по патенту РФ №68634, двигатель устанавливается внутри фюзеляжа.

Для обеспечения такого решения главный редуктор несущего винта выполняется с угловым положением его входного вала, ввиду чего корпус МСХ может располагаться несколько ниже уровня масла в поддоне.

Для обеспечения требуемых для МСХ параметров смазки известным техническим решением необходимо понизить уровень масла в поддоне и, соответственно, положение маслонасоса(ов) в поддоне, сохранив при этом требуемый для смазки главного редуктора объем масла. Такое решение потребует изменения как в конструкции поддона, в частности его увеличения по высоте, и как следствие - изменение (увеличение) длины приводного(ных) вала(ов) маслонасоса(ов), что в совокупности приведет к увеличению массы главного редуктора.

Технической задачей изобретения является оптимизация системы смазки МСХ независимо от компоновочного решения главного редуктора несущего винта, в частности его входной ступени, не увеличивая при этом габариты и массу редуктора.

Сущность решения поставленной задачи заключается в том, что главный редуктор несущего винта, содержащий корпус с установленными в нем зубчатыми передачами и валами, входной ступени, оснащенной муфтой свободного хода, ведомый и ведущий валы которой кинематически связаны посредством роликов с сепараторным прижимным устройством, корпус муфты с каналами подачи масла, поддон редуктора со встроенным маслонасосом, в нем муфта свободного хода (далее муфта) оснащена крыльчаткой, установленной на ведущем валу муфты, выполненной в виде плоского диска с двусторонним расположением по внешнему периметру плоскости диска профилированных лопаток, при этом зазор Δ в плоскости вращения крыльчатки между ее лопатками и стенками элементов корпуса муфты, образующими рабочую полость вращения крыльчатки, равен или меньше соотношения ширины В рабочей части крыльчатки к высоте Н лопаток, а в корпусе муфты имеется отводной канал масла, сопряженный с рабочей полостью вращения крыльчатки, кроме того, профиль лопаток в плоскости диска выполнен дугами окружностей, размер которых приблизительно равен отношению квадрата диаметра по внутренним торцам лопаток к диаметру диска крыльчатки, а сопряжение отводного канала выполнено на диаметральном уровне упомянутой рабочей полости вращения крыльчатки.

Изобретение иллюстрируется чертежами, где на фиг.1 показан общий вид главного редуктора; на фиг.2 - модульное исполнение МСХ; на фиг.3 - место А фиг.2; на фиг.4 показана (условно) рабочая полость крыльчатки с отводным каналом; на фиг.5 показан фрагмент крыльчатки с профилированными лопатками.

Главный редуктор несущего винта 1 содержит корпус 2 с установленными в нем зубчатыми передачами и валами (условно не показано), поддон 3 для масла со встроенным маслонасосом 4, узлами 5 для крепления редуктора 1 на вертолете.

Вал 6 входной ступени 7 зубчатых передач установлен под углом к валу 8 несущего винта. Входная ступень 7 оснащена МСХ 9, выполненной в модульном исполнении в корпусе 10. МСХ 9 содержит ведущий вал 11 и ведомый вал 12, которые кинематически связаны посредством роликов 13 с сепараторным прижимным устройством 14, обеспечивающим большую скорость относительного вращения валов 11, 12 и высокую нагрузочную способность МСХ. Валы 11,12 установлены в корпусе 10 на подшипниковых опорах 15, 16 соответственно.

Поскольку вал 6 входной ступени 7 установлен под углом, то корпус 10 МСХ (его емкость) оказывается несколько ниже уровня масла в поддоне 3 редуктора 1.

Эта конструктивная особенность редуктора 1 вполне объективна, т.к. процедура оптимизации кинематической схемы редуктора, как правило, основана на методике многопараметрического анализа зубчатых зацеплений и критерий оптимизации основан на минимизации габаритных параметров зубчатых передач и редуктора в целом (см. «Механические передачи вертолетов» под ред. В.Н.Кестельмана, М., Машиностроение, 1983. стр.4-6). Поэтому и маслосистема, не зависимо от типа кинематической схемы редуктора, для обеспечения надежной смазки зубчатых зацеплений и подшипниковых узлов должна обладать малыми расходами и гидравлическим сопротивлением.

Маслосистема главного редуктора 1 выполнена двухконтурной с циркуляцией масла по контуру «бак - редуктор/теплообменник - бак», где в качестве бака служит поддон 3 редуктора 1. Маслонасос 4 в этом случае выполнен двухсекционным (условно не показано) с нагнетающей и' откачивающей секциями.

В рамках решения многопараметрической задачи оптимизации системы смазки МСХ 9 оснащена крыльчаткой 17, установленной на ведущем валу 11 посредством переходника 18, который шлицевым соединением 19 соединен с валом 11. Переходник 18 снабжен фланцем 20 для соединения ведущего вала 11 с валом двигателя (условно не показано). Роль крыльчатки 17 - обеспечить откачку масла из полости 21 корпуса 10 МСХ, которая находится ниже уровня масла в поддоне 3, и этим совместно с откачивающей секцией маслонасоса 4 исключить возможность застоя масла в полости 21 корпуса 10 МСХ.

Поскольку масло в редукторах является чистой перекачивающей средой, то конструкция крыльчатки 17, как элемента перекачивающего насоса, выполнена в виде плоского диска 22 с двусторонним расположением по внешнему периметру плоскости диска 22 профилированных лопаток 23, образуя центробежное периферийное колесо двухпоточного исполнения. Профиль лопаток 23 выполнен дугами окружностей 24, размер которых приблизительно равен отношению квадрата диаметра 25 по внутренним торцам 26 лопаток 23 к диаметру диска 22 крыльчатки 17. Лопатки 23 загнуты вперед по направлению вращения крыльчатки 17, что позволяет при высоких оборотах крыльчатки (≈6000 об/мин - обороты вала двигателя) обеспечить наибольшую напорность откачки масла в условиях ограниченных размеров МСХ.

Установка крыльчатки 17 относительно корпусных элементов 27, 28 МСХ 9 выполнена так, что стенки 29 упомянутых корпусных элементов образуют кольцевую рабочую полость 30 вращения крыльчатки 17, а зазор Δ в плоскости вращения крыльчатки 17 между ее лопатками 23 и стенками 29 равен или меньше соотношения ширины В рабочей части крыльчатки 17 по оси ее вращения к высоте Н лопаток в диаметральной плоскости диска 22. В корпусе 10 МСХ 9 выполнены каналы 31 для подачи масла под давлением через форсунки 32 и жиклеры 33, установленные в упомянутых каналах. Полость 21 за счет проточек, выполненных в корпусных элементах 27, 28 (условно не показано) сообщается (самотеком) с рабочей полостью 30 вращения крыльчатки 17.

Для отвода масла из внутрикорпусной полости 21 в корпусе 10 выполнен отводной канал 34, который сопряжен с рабочей полостью 30 вращения крыльчатки 17 на ее нижнем диаметральном уровне.

Работа системы смазки входной степени 7 главного редуктора 1, в частности, МСХ 9 осуществляется следующим образом.

При запуске двигателя через переходник 18 начинает вращаться ведущий вал 11 МСХ 9, который посредством роликов 13 с сепараторным прижимным устройством 14 приводит во вращение ведомый вал 12 и далее через входной вал 6 и входную ступень 7 - всю зубчатую передачу редуктора 1. Поскольку маслонасос 4 кинематически связан с зубчатой передачей редуктора, то он также вступает в работу, и его нагнетающая секция забирает масло из поддона 3 и под давлением ≈0,35…0,45 МПа подает, в частности, в канал 31 через жиклер 33 и далее через форсунку 32 на смазку рабочих звеньев 13, 14 и подшипниковой опоры 15 МСХ 9. В процессе дозированной, через жиклеры, непрерывной смазки упомянутых звеньев МСХ масло нагревается и самотеком стекает в полость 21, которая находится ниже уровня масла в поддоне 3, и откачивающей секции маслонасоса 4 проблематично откачать его для подачи в теплообменник. Эту функцию в дополнении к откачивающей секции маслонасоса 4 выполняет крыльчатка 17, рабочая полость 30 которой сообщается с полостью 21. За счет подбора параметров крыльчатки 17: - диаметра ее диска 22, профилировке и размеру лопаток 23, при заданной (оборотами двигателя) частоте вращения, крыльчатка 17 создает в зоне сопряжения полости 30 с отводным каналом 34 напор достаточный для откачки масла из полости 21 в поддон 3. Далее откачивающая секция маслонасоса 4 из поддона 3 направляет горячее масло по контуру «бак-теплообменник-бак» и цикл повторяется.

Использование крыльчатки 17 в качестве как дополнительного насосного элемента к откачивающей секции маслонасоса 4 позволяет повысить производительность откачивающей функции маслонасоса 4 и этим обеспечить непрерывность циркуляции масла, исключить возможность застоя масла и, как следствие, отложения продуктов износа и загрязнения маслосистемы.

Для обеспечения безотказности работы крыльчатки 17 выбор ее параметров как насоса оценивался по показателю кавитационного запаса NPSH (Net Positive Suctioin Head) для исключения ценообразования.

На предложенную конструкцию главного редуктора несущего винта разработана рабочая конструкторская документация.

1. Главный редуктор несущего винта, содержащий корпус с установленными в нем зубчатыми передачами и валами входной ступени, оснащенной муфтой свободного хода, ведомый и ведущий валы которой кинематически связаны посредством роликов с сепараторным прижимным устройством, корпус муфты с каналами подачи масла, поддон редуктора со встроенным маслонасосом, отличающийся тем, что муфта свободного хода (далее муфта) оснащена крыльчаткой, установленной на ее ведущем валу, выполненной в виде плоского диска с двусторонним расположением по внешнему периметру плоскости диска профилированных лопаток, при этом зазор Δ в плоскости вращения крыльчатки между ее лопатками и стенками элементов корпуса муфты, образующими рабочую полость вращения крыльчатки, равен или меньше соотношения ширины В рабочей части крыльчатки к высоте Н лопаток, а в корпусе муфты имеется отводной канал масла, сопряженный с рабочей полостью вращения крыльчатки.

2. Главный редуктор по п.1, отличающийся тем, что профиль лопаток в плоскости диска выполнен дугами окружностей, размер которых приблизительно равен отношению квадрата диаметра по внутренним торцам лопаток к диаметру диска крыльчатки, а сопряжение отводного канала выполнено на диаметральном уровне упомянутой рабочей полости вращения крыльчатки.



 

Похожие патенты:

Изобретение относится к области авиации, конкретно к рулевым винтам вертолетов с одним несущим винтом. .

Изобретение относится к авиационной технике и может быть использовано при создании конструкций фюзеляжей вертолетов. .

Изобретение относится к машиностроению, в частности к высокоскоростным роликовым механизмам свободного хода, и может быть использовано в редукторах несущего винта вертолета.

Изобретение относится к авиационной технике, в частности к трансмиссии редуктора соосных противоположного вращения несущих винтов вертолета. .

Изобретение относится к летательным аппаратам вертикального взлета. .

Изобретение относится к авиастроению и касается конструирования приводного кинематического узла беспилотного воздушного летательного аппарата для передачи вращающего момента от двигателя на трансмиссию узла соосных несущих винтов.

Изобретение относится к транспортному машиностроению и может быть использовано в винтокрылых летательных аппаратах. Регулируемая трансмиссия винтокрылого летательного аппарата содержит редуктор (1), две обгонные муфты (2) на валах от двигателей, вал (4) несущего винта, вал (5) пропульсивного движителя, и дифференциал, который связан зубчатыми колесами (3) с валами двигателей. Одно выходное звено (7) дифференциала соединено с валом (5) пропульсивного движителя. Другое выходное звено (8) дифференциала связано с валом (4) несущего винта через высокоскоростную обгонную муфту (12). Водило (9) дифференциала связано с валом (4) несущего винта через низкоскоростную обгонную муфту (11). Каждое звено дифференциала имеет устройство торможения (13, 14). Изобретение позволит значительно увеличить скорость полета за счет снижения оборотов несущего винта, повысить тягу несущего винта (несущих винтов) на малых скоростях полета и безопасность летательного аппарата при работе у земли. 1 ил.

Изобретение относится к области авиации, в частности к конструкциям приводов несущих винтов винтокрылых летательных аппаратов. Летательный аппарат (1) оснащен вращающейся несущей поверхностью (2) и по меньшей мере одним главным редуктором (5) для приведения во вращение упомянутой вращающейся несущей поверхности (2). Упомянутый летательный аппарат (1) содержит первый (11) и второй (12) основные двигатели, предназначенные для приведения в действие упомянутого главного редуктора (5), при этом летательный аппарат (1) оснащен основной системой (15) регулирования, регулирующей основные двигатели (11,12) по переменному заданному значению. Вспомогательный двигатель (21) тоже может приводить в действие упомянутый главный редуктор (5), причем упомянутый летательный аппарат (1) имеет вспомогательную систему (25) регулирования, которая регулирует вспомогательный двигатель (21) по постоянному заданному значению и которая является независимой от упомянутой основной системы (15) регулирования. Достигается возможность выполнения режима висения при отказе одного из двигателей. 2 н. и 19 з.п. ф-лы, 6 ил.

Изобретение относится к области авиации, в частности к конструкциям приводов винтокрылых летательных аппаратов. Тяговая и передающая движение установка (1) содержит первую гидростатическую трансмиссию (2), включающую в себя первую гидромашину (18) для преобразования механической энергии в гидравлическую энергию и первую гидромашину (26) для преобразования гидравлической энергии в механическую энергию; вторую гидростатическую трансмиссию (8), включающую в себя вторую гидромашину (62) для преобразования механической энергии в гидравлическую энергию и вторую гидромашину (70) для преобразования гидравлической энергии в механическую энергию. Каждая из первой и второй гидростатических трансмиссий (2, 8) содержит ветвь (24, 68) высокого давления и ветвь (30, 74) низкого давления, которые в каждой из первой и второй гидростатических трансмиссий (2, 8) гидравлически соединяют гидромашины. Установка (1) также содержит клапаны (108, 112), выполненные с возможностью соединения (106) между ветвью (30) низкого давления первой гидростатической трансмиссии (2) и ветвью (74) низкого давления второй гидростатической трансмиссии (8) и второго соединения (110) между ветвью (24) первой трансмиссии и ветвью (68) второй трансмиссии. Достигается повышение безопасности при отказе. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к газотурбинному двигателю (100) для вертолета (200). Вертолет содержит главный редуктор, винт (204) и устройство (206) понижения частоты вращения, размещенное полностью в главном редукторе (202) вертолета и соединенное с упомянутым винтом. Газотурбинный двигатель содержит корпус (102), газогенератор (114) с валом (115) газогенератора и свободную турбину (124), приводимую во вращение потоком газа, создаваемым газогенератором. Упомянутая свободная турбина имеет вал (128) свободной турбины. В газотурбинном двигателе, когда газотурбинный двигатель прикреплен к редуктору вертолета, вал свободной турбины проходит аксиально в главный редуктор вертолета для того, чтобы быть непосредственно соединенным с устройством понижения частоты вращения. 2 н. И 10 з.п. ф-лы, 4 ил.

Изобретение относится к планетарному механизму и способу производства такого планетарного механизма. Планетарный механизм (6) для летательного аппарата (1), способного к полету в неподвижной точке, содержит солнечную шестерню (7), которая поворачивается вокруг первой оси (A) и содержит множество первых зубьев (11); неподвижное коронное зубчатое колесо (8), содержащее множество вторых зубьев (12); и по меньшей мере две планетарные шестерни (9a, 9b, 9c, 9d, 9e), каждая из которых содержит множество третьих зубьев (13). Каждая планетарная шестерня (9a, 9b, 9c, 9d, 9e) зацепляется с коронным зубчатым колесом (8) и солнечной шестерней (7) и поворачивается вокруг соответствующих вторых осей (B), которые, в свою очередь, способны оборачиваться вокруг первой оси (A). По меньшей мере два из третьих зубьев (13) зацепляются одновременно с соответствующими вторыми зубьями (12) и дополнительные два из третьих зубьев (13) зацепляются одновременно с соответствующими первыми зубьями (11). Третьи зубья (13) содержат первую сторону (16a) и вторую сторону (16b), которые, соответственно, имеют первый угол (α1) профиля и второй угол (α2) профиля, которые отличны друг от друга. Количество (ZP) третьих зубьев (13) каждой планетарной шестерни (9a, 9b, 9c, 9d, 9e) отлично от абсолютного значения полуразности ((ZC-ZS)/2) между количеством (ZS) первых зубьев (11) солнечной шестерни (7) и количеством (ZS) вторых зубьев (12) коронного зубчатого колеса (8). В результате передача движения на вал ротора реализуется простым и бесшумным образом. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к области авиации, в частности к конструкциям винтокрылых летательных аппаратов (ВКЛА). ВКЛА, выполненный по одновинтовой схеме, содержит фюзеляж, хвостовую балку, рулевой винт, прикрепленный к хвостовой балке, один несущий винт, один двигатель, главный редуктор. Двигатель всеми своими опорами жестко прикреплен к корпусу главного редуктора. Хвостовая балка жестко прикреплена к корпусу главного редуктора. Несущий винт, двигатель, редуктор и хвостовая балка представляют собой отдельный модуль, прикрепляемый к фюзеляжу посредством упругой подвески жидкостно-газового или пружинного типа. В качестве двигателя может быть использован турбовальный двигатель. Двигатель может быть прикреплен к хвостовой балке. ВКЛА может быть выполнен с двумя двигателями. Достигается снижение вибрации и повышение комфорта для пассажиров. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, а именно к главному четырехступенчатому непланетарному редуктору вертолета. Редуктор вертолета имеет две линии передачи крутящего момента от двух приводных двигателей (1) на общее ведомое колесо (2) для привода вала (3) несущего винта и общее ведомое колесо (4) для привода вала (5) хвостового винта. Каждая из линий содержит четыре ступени редукции. На третьей ступени редукции установлена ведущая шестерня (13) третьей ступени, размещенная на третьем валу (12), первая пара ведомых колес (14) третьей ступени, находящихся в зацеплении с указанной шестерней (13), и вторая пара ведомых колес (14) третьей ступени, связанных с первой парой через паразитные шестерни (16). На четвертой ступени редукции предусмотрены четыре ведущих шестерни (17) четвертой ступени, установленные на валах (15) вращения ведомых колес (14) третьей ступени и находящиеся в зацеплении с общим ведомым колесом (2) вала (3) несущего винта. В каждой из указанных линий второй вал (9) связан с приводом (22) коробки агрегатов вертолета. Кроме того, на втором валу (9) установлена ведущая шестерня (18) для привода вала хвостового винта. Обеспечивается снижение веса редуктора, а также снижение износа подшипников качения валов. 3 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области авиастроения, в частности может быть использовано в главных редукторах несущих винтов вертолетов

Наверх