Корреляционно-фазовый пеленгатор

Изобретение относится к области радионавигации и может быть использовано при построении систем определения угловых координат, принцип действия которых основан на определении временного сдвига между радиосигналами, принимаемыми от объекта. Достигаемый технический результат изобретения заключается в расширении диапазона определяемых угловых координат и устранении неоднозначности, вызванной периодическим характером сигнала несущей частоты. Корреляционно-фазовый пеленгатор содержит две антенны, два высокочастотных блока, два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства и коррелятор, определенным образом соединенные между собой. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к области радионавигации и может быть использовано при построении систем определения угловых координат, принцип действия которых основан на определении временного сдвига между радиосигналами, принимаемыми от объекта.

Известен пеленгатор, содержащий две антенны, имеющие общие фазовые центры и формирующие разнесенные диаграммы направленности, два приемника и блок сравнения амплитуд, выход которого является информационным выходом пеленгатора, первая и вторая антенны соединены соответственно с первым и вторым приемниками, выходы которых подключены ко входам блока сравнения амплитуд [Радиотехнические системы / Под ред. А.И.Дымовой. - М.: Советское радио, 1975, стр.154, рис.4.40].

Недостатком пеленгатора является невысокая точность определения угловых координат и ограниченный диапазон однозначного определения угла, что обусловлено применяемым в устройстве методом амплитудного пеленгования.

Известен пеленгатор, реализующий фазовый метод пеленгования, выбранный в качестве прототипа, содержащий две антенны, два высокочастотных блока, каждый из которых состоит из смесителя и усилителя промежуточной частоты, фазовращатель и фазовый детектор, выход которого является информационным выходом пеленгатора, первая и вторая антенны соединены соответственно с первым и вторым высокочастотными блоками, выход первого высокочастотного блока соединен со входом фазовращателя, выход которого соединен с первым входом фазового детектора, второй вход которого соединен с выходом второго высокочастотного блока [Винницкий А.С. Автономные радиосистемы. - М.: Радио и связь, 1986, стр.202, рис.11.6, а].

Недостатком пеленгатора является невозможность корректного определения направления на объект при углах, приводящих к геометрической задержке принимаемых сигналов больше длительности периода принимаемых сигналов.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в расширении диапазона определяемых угловых координат и устранении неоднозначности, вызванной периодическим характером сигнала несущей частоты.

Технический результат достигается тем, что в корреляционно-фазовый пеленгатор, содержащий две антенны, два высокочастотных блока, согласно изобретению введены два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства и коррелятор, входы первого и второго демодуляторов соединены с выходами соответственно первого и второго высокочастотных блоков, выходы первого и второго демодуляторов соединены с входами соответственно первого и второго спектроанализаторов, выходы которых подключены ко входам блока сравнения спектров, выход которого соединен с разрешающим входом коррелятора, первый информационный вход которого соединен с выходом первого запоминающего устройства, вход которого соединен с выходом первого демодулятора, второй информационный вход коррелятора соединен с выходом второго запоминающего устройства, вход которого соединен с выходом второго демодулятора, выход коррелятора является информационным выходом пеленгатора.

При этом демодуляторы могут быть предназначены как для демодуляции фазомодулированных сигналов, так и для демодуляции частотно-модулированных сигналов.

Коррелятор может быть выполнен в виде устройства, вычисляющего знаковую корреляционную функцию.

Блок сравнения спектров может быть выполнен в виде устройства, вычисляющего коэффициент корреляции спектров.

Сущность изобретения поясняется графическим материалом.

На фиг.1 показан чертеж, иллюстрирующий принцип определения угловых координат при приеме сигнала в двух разнесенных точках; на фиг.2 - функциональная схема корреляционно-фазового пеленгатора.

На чертеже по фиг.1 показаны первая и вторая приемные антенны 1 и 2, расстояние между которыми d, угол α прихода фронта радиоволн и геометрическая задержка τ.

Функциональная схема корреляционно-фазового пеленгатора (фиг.2) содержит антенны 1 и 2, высокочастотные блоки 3 и 4, демодуляторы 5 и 6, спектроанализаторы 7 и 8, блок 9 сравнения спектров, запоминающие устройства (ЗУ) 10 и 12, коррелятор 11, выход которого является информационным выходом τ* пеленгатора. Антенны 1 и 2 соединены соответственно с высокочастотными блоками 3 и 4, выходы которых соединены соответственно с входами демодуляторов 5 и 6, выходы которых соединены соответственно со входами спектроанализаторов 7 и 8, выходы которых подключены ко входам блока 9 сравнения спектров, выход которого соединен с разрешающим входом Е коррелятора 11, первый информационный вход Х которого соединен с выходом ЗУ 10, вход которого соединен с выходом демодулятора 5, второй информационный вход У коррелятора 11 соединен с выходом ЗУ 12, вход которого соединен с выходом демодулятора 6.

Определение угловой координаты α источника излучения радиоволн, которым является пеленгуемый объект, осуществляется путем измерения разности времен прихода фронта волны к двум разнесенным на расстояние d приемным антеннам 1 и 2, как показано на фиг.1. По результатам оценки геометрической задержки τ (вышеуказанной разности), исходя из известной связи α=arcsin(τ/d), находят искомый угол α.

Работает корреляционно-фазовый пеленгатор (фиг.2) следующим образом.

Антенны 1 и 2 принимают радиоизлучение от пеленгуемого объекта, например, от искусственного спутника. Предполагаются априорно известными вид модуляции, используемый при передаче информации от объекта, и значение несущей частоты. Селектированные по известным несущим частотам и усиленные в высокочастотных блоках 3, 4 сигналы направляются в демодуляторы 5, 6 для выделения низкочастотной информационной составляющей - сообщения, находящегося в передаваемом от объекта сигнале. Характер и содержание передаваемого сообщения в настоящем случае роли не играют. Полученные низкочастотные сигналы направляются в спектроанализаторы 7, 8 для определения их спектра за время анализа t и одновременно в ЗУ 10, 12, в которых задерживаются на время t. Далее по истечении времени анализа t результаты определения спектров направляются в блок 9 сравнения, назначением которого является вычисление количественного показателя, по значению которого можно было бы судить, насколько похожи спектры сигналов, полученные в результате демодуляции принятых пеленгатором высокочастотных сигналов. При принятии блоком 9 решения о высокой степени похожести спектров на его выходе формируется сигнал Е, разрешающий работу коррелятора 11. Назначение коррелятора 11 - определение относительного временного сдвига случайных сигналов, поступающих на его информационные входы X, Y. Указанный временной сдвиг является оценкой τ* геометрической задержки (см. фиг.1), по значению которой определяют искомый угол α. Если по результатам сравнения в блоке 9 будет установлено, что спектры продемодулированных сигналов недостаточно похожи, то сигнал Е разрешения работы коррелятора 11 не выдается и поступающая с выходов ЗУ 10, 12 информация в корреляционном анализе не участвует.

Из приведенного описания видно, что корреляционному анализу подвергаются не узкополосные высокочастотные сигналы, а случайные сигналы с произвольным спектром, представляющие собой сообщения, содержащиеся в излучаемых высокочастотных сигналах. По этой причине устраняется неоднозначность определения величины, вызванная периодичностью высокочастотных несущих, а следовательно, расширяется диапазон измерения угловых координат, который функционально будет определяться диапазоном измеряемых временных сдвигов коррелятора 11. Разумеется, разрешающая способность пеленгатора также будет зависеть от разрешения коррелятора 11. В свою очередь, операция сравнения спектров демодулированных сигналов необходима для снижения вероятности корреляционного анализа сильно искаженных сигналов или ошибочно принятых на антенных пунктах разных сигналов. Разрешение на проведение корреляционного анализа выдается только в случае идентичности спектров.

Сравнение спектров может проводиться разными способами, например путем вычисления коэффициента корреляции спектров, как показано в работе [Пат. РФ №2328003. Одноканальный корреляционный измеритель частотных искажений / Г.Р.Аванесян. - Опубл. 27.06. 2010, Бюл. №18], в этом случае сигнал разрешения работы коррелятора должен выдаваться при условии либо равенства коэффициента корреляции спектров единице, либо нахождения в окрестности единицы в допустимых пределах. На практике целесообразно задавать пороговое значение, превышение которого следует рассматривать как признак высокой корреляции спектров и формировать сигнал разрешения при превышении установленного порога.

ЗУ 10, 12, показанные на функциональной схеме пеленгатора, необходимы для задержки во времени сигналов, подаваемых на информационные входы X, Y коррелятора 11. Задержка сигналов на время t необходима для окончания спектрального анализа и принятия решения об идентичности (неидентичности) спектров. По этой причине время задержки t выбирается равным времени анализа спектров (предполагается, что время, затрачиваемое на принятие решения, ничтожно мало по сравнению со временем анализа спектров t).

В качестве коррелятора следует использовать устройство, осуществляющее нахождение τ* по положению взаимокорреляционного пика сигналов, поступающих на его входы. Такие устройства давно известны и описаны в различных работах, например, в [А.с. СССР №1815652. Корреляционное устройство / Г.Р.Аванесян. - Опубл. 15.05.1993, Бюл. №18]. В указанной работе показан коррелятор с управляющим входом, который может быть использован в качестве входа разрешения Е, в соответствии с требованиями, предъявляемыми к коррелятору 11, входящему в состав предложенного пеленгатора.

1. Корреляционно-фазовый пеленгатор, содержащий две антенны, два высокочастотных блока, первая и вторая антенны соединены соответственно с первым и вторым высокочастотными блоками, отличающийся тем, что в него введены два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства и коррелятор, входы первого и второго демодуляторов соединены с выходами соответственно первого и второго высокочастотных блоков, выходы первого и второго демодуляторов соединены со входами соответственно первого и второго спектроанализаторов, выходы которых подключены ко входам блока сравнения спектров, выход которого соединен с разрешающим входом коррелятора, первый информационный вход которого соединен с выходом первого запоминающего устройства, вход которого соединен с выходом первого демодулятора, второй информационный вход коррелятора соединен с выходом второго запоминающего устройства, вход которого соединен с выходом второго демодулятора, выход коррелятора является информационным выходом пеленгатора.

2. Корреляционно-фазовый пеленгатор по п.1, отличающийся тем, что демодуляторы предназначены для демодуляции фазомодулированных сигналов.

3. Корреляционно-фазовый пеленгатор по п.1, отличающийся тем, что демодуляторы предназначены для демодуляции частотно-модулированных сигналов.

4. Корреляционно-фазовый пеленгатор по п.1, отличающийся тем, что коррелятор выполнен в виде устройства, вычисляющего знаковую корреляционную функцию.

5. Корреляционно-фазовый пеленгатор по п.1, отличающийся тем, что блок сравнения спектров выполнен с возможностью вычисления коэффициентов корреляции спектров и выдачи сигнала разрешения работы коррелятора при условии либо равенства коэффициентов корреляции спектров единице, либо нахождения в окрестности единицы в допустимых пределах.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться преимущественно для однозначного определения пространственных координат объекта, в том числе в системах навигации и посадки летательных аппаратов.

Изобретение относится к технике связи и может использоваться преимущественно для однозначного определения пространственных координат объекта - источника радиоизлучения (ИРИ), в том числе в системах навигации и посадки летательных аппаратов.

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство обнаружения сигналов и измерения направления на источник излучения этого сигнала.

Изобретение относится к области измерительной техники и может быть использовано в радионавигации при создании наземных фазовых радионавигационных систем. .

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство.

Изобретение относится к области антенной техники, а именно к способам формирования фазовой пеленгационной характеристики. .

Триангуляционно-гиперболический способ определения координат радиоизлучающих воздушных объектов (РВО) в пространстве относится к области пассивной локации и может быть использован для решения задач определения координат РВО и траекторий их движения в пространстве при использовании базово-корреляционного метода. Достигаемый технический результат - повышение пропускной способности многопозиционной системы пассивной локации. Способ заключается в измерении на всех приемных пунктах: на одном центральном и нескольких периферийных пунктах, угловых координат РВО и разностей дальности между центральным и периферийными приемными пунктами. Определение координат осуществляют в два этапа: на первом этапе определяют строб местоположения РВО, получаемого на основании угловых координат этого источника, измеренных центральным и всеми периферийными приемными пунктами (триангуляционный способ). На втором этапе в полученном стробе вычисляют разности дальностей между центральным и всеми периферийными приемными пунктами, определяют точное место нахождения РВО в пространстве. На каждом периферийном приемном пункте для измерения разности времени запаздывания сигнала по команде с центрального пункта устанавливают пеленг на РВО для выполнения условия приема одного и того же сигнала всеми приемными пунктами (использование гиперболического способа). 4 ил.

Изобретение относится к области радиотехники и касается акустооптического интерферометра. Акустооптический интерферометр состоит из антенной решетки, источника когерентного излучения, коллиматора, акустооптического модулятора с четырьмя пьезопреобразователями, фурье-линзы, матричного фотоприемника и цифрового процессора. Антенная решетка содержит две пары ненаправленных приемных элементов, расположенных в одной плоскости так, что линии, соединяющие приемные элементы каждой пары, перпендикулярны друг другу. Выходы первой пары приемных элементов антенной решетки соединены с первой парой пьезопреобразователей непосредственно, а выходы второй пары приемных элементов антенной решетки соединены со второй парой пьезопреобразователей через фазовращатели на 90°. Технический результат заключается в увеличении сектора однозначно определяемых углов прихода радиоизлучения до 360 градусов. 3 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - снижение аппаратных затрат. Предлагаемый способ основан на приеме сигналов ИРИ антеннами, измерении разности времени приема сигнала от ИРИ в нескольких точках пространства сканирующими радиоприемными устройствами, преобразованных в систему уравнений, а также основан на использовании двух одинаковых, стационарных радиоконтрольных постов (РП), один из которых принимают за ведущий, соединяя с другим линией связи, при этом калибруют измеритель величины запаздывания прихода сигналов на (РП), используя эталонные радиоэлектронные средства (РЭС) с известными параметрами сигналов и координатами местоположения, затем на РП осуществляют квазисинхронное сканирование и измерение уровней сигналов на заданных фиксированных частотах настройки и величину запаздывания прихода сигналов ИРИ. Информацию с ведомого РП передают на ведущий, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с учетом результатов калибровки измерителей, а также составляют два уравнения положения ИРИ, каждое из которых описывает окружность с радиусом, равным расстоянию от РП до ИРИ. Расстояния при этом определяют через отношение уровней сигналов и разность времени приема сигнала, измеренных на РП с использованием только одной пары антенн с известными азимутом оси главного лепестка и диаграммой направленности, главный лепесток каждой из которых расположен в разных полуплоскостях относительно линии базы, а координаты ИРИ определяют численным методом решения составленных уравнений, принимая за истинные лишь координаты, относящиеся в той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала. Устройство, реализующее способ, содержит два одинаковых РП, один из которых является ведущим, и на каждом посту содержит направленные антенны, измерительный сканирующий радиоприеник, измеритель величины запаздывания прихода сигналов, компьютер и устройство связи, определенным образом соединенные между собой. 2 н.п. ф-лы, 2 ил.

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения координат источников излучения сложных сигналов с комбинированной фазой и частотной манипуляциями (ФМн-ЧМн), размещенных на борту летательного аппарата (самолет, вертолет, дирижабль, зонд и т.п.), и определения их параметров. Достигаемый технический результат - расширение функциональных возможностей известных способа и устройства путем точного и однозначного определения азимута и угла места источника излучения сложного сигнала с комбинированной фазовой и частотной манипуляциями, размещенного на борту летательного аппарата, и его синхронного детектирования. Фазовый пеленгатор, реализующий предлагаемый фазовый способ пеленгации, содержит приемные антенны, три приемника, опорный генератор, генератор импульсов, электронный коммутатор, два фазовращателя на 90°, восемь фазовых детекторов, индикатор, гетеродин, смеситель, усилитель промежуточной частоты, четыре перемножителя, три полосовых фильтра, линию задержки, два квадратора, масштабирующий перемножитель, вычитатель, удвоитель фазы, три блока фазовой автоподстройки частоты, два делителя фазы на два, три узкополосных фильтра, частотный демодулятор, сумматор и блок регистрации, определенным образом соединенные между собой. 2 н.п. ф-лы, 4 ил.

Изобретение может использоваться в радиоразведке, радиомониторинге, при поиске специальных электронных устройств перехвата информации для определения местоположения источника радиоизлучения (ИРИ). Достигаемый технический результат - определение направления на ИРИ и дальности на относительно небольших расстояниях. Указанный результат достигается за счет того, что фазовый пеленгатор содержит три антенны, три приемных тракта, три фазовых детектора, частотомер, блок пересечения, блок объединения, блок определения пеленга, блок определения дальности, соединенные определенным образом между собой. 11 ил.

Изобретение относится к области радиотехники и может быть использовано в многопозиционных радиотехнических системах для определения координат источников радиоизлучения (ИРИ). Технический результат заключается в повышении точности вычисления координат ИРИ. Для этого в способе осуществляют прием сигнала ИРИ разнесенными пунктами приема и обработки, имеющими общий пункт управления, связанными между собой командными линиями связи и линиями аналоговой ретрансляции сигнала. В каждом пункте приема и обработки измеряют отношение сигнал/шум, результаты измерений передают на пункт управления, сравнивают между собой, по результатам сравнения решение задачи вычисления координат посредством совместной обработки радиосигналов возлагают на пункт приема и обработки с наименьшим отношением сигнал/шум. 3 ил.

Изобретение относится к радиотехнике и может быть использовано для обнаружения и пеленгации источников излучения сигналов. Достигаемый технический результат - повышение помехозащищенности, расширение функциональных возможностей и увеличение чувствительности пеленгатора. Указанный результат достигается за счет того, что фазовый пеленгатор содержит две антенны, два приемных устройства, фазометр, четыре преобразователя частоты, четыре полосовых фильтра высокой частоты, четыре фильтра промежуточной частоты, два режекторных фильтра на второй промежуточной частоте, два блока фильтров, блок фазометров, шесть усилителей радиочастоты и вычислительное устройство, определенным образом соединенные между собой, при этом вычислительное устройство осуществляет вычисление угловых координат источника излучения. 2 ил.

Изобретение относится к радиопеленгации. Достигаемый технический результат - повышение помехоустойчивости и точности определения угловых координат. Указанный результат достигается за счет того, что способ пеленгации основан на приеме сигналов на две антенны, соответствующие первому и второму фазовым каналам, при этом антенны удалены друг от друга на расстояние d, усилении и ограничении, кроме того, вводят третью приемную антенну на произвольном расстоянии от первой и второй антенн, усиливают и ограничивают входную смесь сигналов, принятых третьей антенной, перемножают смесь сигналов с третьей антенны с сигналом синтезатора частот, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов с входной смесью сигналов с первой антенны, выделяют взаимную комбинационную составляющую (КС) на комбинационной частоте, возникающую при взаимодействии на нелинейном элементе сигнала из смеси сигналов с первой антенны и помехи из смеси сигналов с третьей антенны, аналогичное преобразование смеси сигналов и выделение взаимной КС на той же комбинационной частоте производят для второй антенны, при этом решение о наличии комбинационных составляющих на выходе каждого фазового канала принимают при превышении уровнем сигнала заранее установленного порога, затем для выделенной пары комбинационных составляющих на одной и той же частоте осуществляют измерение разности фаз, соответствующей времени запаздывания сигнала при приеме на первую и вторую антенны, вычисляют пеленгационный угол источника излучения. 3 ил.

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой. Достигаемый технический результат - повышение точности пеленгации в широком частотном диапазоне и обеспечение полной глубины встроенного контроля пеленгатора. Заявленный фазовый пеленгатор содержит N+1 антенн, расположенных в одной плоскости, N+2 смесителей и предварительных усилителей промежуточной частоты, полоснопропускающий фильтр высокой частоты, N+2 полоснопропускающих фильтров промежуточной частоты, N+2 усилителей промежуточной частоты с логарифмическим видеовыходом, перестраиваемый гетеродин, блок управления частотой гетеродина, контрольный генератор, направленный ответвитель, усилитель высокой частоты, квадратурный делитель, N-входовый аналоговый сумматор, формирователь напряжения смещения, блок фазовых детекторов, квадратурный фазовый детектор, два блока АЦП, два пороговых устройства, два двухвходовых аналоговых сумматора, блок коррекции, вычислитель пеленгов, электрически программируемое запоминающее устройство, аналоговый компаратор, четырехвходовую схему совпадений и вычислитель промежуточной частоты, определенным образом соединенные между собой. 4 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах для определения координат источников радиоизлучения (ИРИ). Достигаемым техническим результатом является уменьшение количества вычислений в процедуре расчета координат ИРИ. Способ основан на том, что за счет предварительной обработки сигналов ИРИ после их ретрансляции реализуется однократное вычисление взаимокорреляционных функций для оценки временных задержек при распространении сигналов ИРИ. 1 ил.
Наверх