Способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов


 


Владельцы патента RU 2475334:

Учреждение Российской академии наук Институт вычислительного моделирования Сибирского отделения Российской академии наук (ИВМ СО РАН) (RU)

Изобретение относится к литейному производству, в частности к модифицированию литейных алюминиево-кремниевых сплавов доэвтектического состава. Модификатор в виде прутка получают путем смешивания алюминиевого порошка с размерами частиц 0,5-0,7 мм и ультрадисперсного порошка нитрида титана TiN со средним размером частиц порядка 40 нанометров в планетарной мельнице в течение 5 минут при 400 об/мин и прессования полученной композиции в пруток. Способ позволяет получать пруток для модифицирования с повышенным содержанием ультрадисперсного порошка нитрида титана. 2 табл., 1 пр.

 

Предлагаемое изобретение относится к литейному производству, а именно к модифицированию доэвтектических алюминиево-кремниевых сплавов.

Известен «Способ изготовления модификатора для доэвтектических алюминиево-кремниевых сплавов» [Патент CN 101538666 А, С22С 1/00], включающий следующие операции: в графитовый тигель, нагретый в электрической печи сопротивления до 450-550°С, загружается чушковый алюминий. Затем насыпается слой сухого покровного агента, содержащего, вес.%: 50% NaCl и 50% KCl, производится нагрев до 760-800°С, после чего в расплавленный алюминий вводятся поочередно чушка сурьмы, вес которой составляет 5-15% от веса всего модификатора, чушка иттрия, вес которой составляет 1-2% от веса всего модификатора, и чушка магния, вес которой составляет 1-2% от веса всего модификатора. После чего жидкий металл выдерживается при этой температуре 20-30 минут; затем его перемешивают графитовым прутком высокой чистоты, затем в течение 2-5 мин, вводят аргон из положения на 8-15 мм от донной части жидкого металла при скорости потока 8-20 мл/сек; очищают металл и заливают его в металлическую форму, где он охлаждается до комнатной температуры.

Недостатками способа являются:

1) большая длительность процесса приготовления модификатора, связанная:

а) с необходимостью поочередного выполнения операций загрузки компонентов;

б) с выдержкой металла до 20-30 мин при температуре 760-800°С;

2) высокая температура плавления иттрия (+1528°С), более чем в два раза превышающая температуру плавления других компонентов модификатора - алюминия (+660°С), сурьмы (+630,5°С) и магния (+651°С), в связи с чем для его полного растворения фактически должно требоваться или более длительная выдержка расплава при указанной температуре (760-800°С), или ее значительное повышение; кроме того, на воздухе иттрий покрывается плотной защитной окисной пленкой Y2O3, температура плавления которой составляет 2451°С, в связи с чем для обеспечения растворения иттрия его необходимо или хранить без контакта с воздушной средой, или тщательно очищать перед загрузкой в расплав, причем, как правило, очистка шихтовых материалов от окислов производится с помощью жидких химических средств, например травлением в кислотах;

3) невозможность точного соблюдения расстояния места введения аргона (8-15 мм от дна плавильного тигля), что практически невозможно точно измерить в жидком металле; кроме того, введение аргона должно производится через трубку из какого-то материала - графит, кварц, металл - которые могут взаимодействовать с жидким металлом, загрязняя его.

4) применение при приготовлении модификатора входящие в состав покровного агента (флюса) соли NaCl и 50% KCl приводят к преждевременному разрушению плавильной емкости; кроме того, указанные соли NaCl и 50% KСl обладают высокой гигроскопичностью, в связи с чем их необходимо хранить перед употреблением в сушильном шкафу с целью предотвращения насыщения влагой и попадания ее в жидкий металл при модифицировании, что вызывает появление пористости в отливках и снижения их механических свойств.

Наиболее близким по технической сущности является «Способ модифицирования литейных алюминиевых сплавов эвтектического типа» [А.с. СССР №831840, С22С 1/06. Опубл. 23.05.1981], включающий рафинирование сплава АЛ2 гексахлорэтаном C2Cl6 с последующим модифицированием модификатором (45,0% NaCl + 40% NaF + 15% Na3AlF6 - в тексте описания А.с. 831840 ошибочно написано Na3Al3F6) и введения в него ультрадисперсного порошка карбида бора B4C (получен методом плазмохимического синтеза) в количестве 0,05-0,08% от массы сплава в объеме прутка, отпрессованного из алюминиевых гранул, обсыпанных карбидом бора В4С.

Недостатками способа являются:

1) достаточно высокая длительность процесса приготовления сплава в связи с необходимостью выполнения трех последовательных операций: рафинирование → обработка расплава модификатором введение в расплав ультрадисперсного порошка карбида бора В4С в объеме прутка, отпрессованного из этого порошка и алюминиевых гранул, так как при их выполнении и между их проведением требуется определенная выдержка;

2) излишний расход электроэнергии в связи с длительностью выполнения указанных в п.1 трех операций,

3) воздействие содержащихся в модификаторе солей на плавильную емкость, что приводит к ее преждевременному разрушению;

4) гигроскопичность солей, входящих в состав модификатора, что требует его хранения перед употреблением в сушильном шкафу с целью предотвращения насыщения влагой и попадания ее в жидкий металл при модифицировании, что вызывает появление пористости в отливках и снижения их механических свойств.

5) необходимость расходования достаточно большого количества прутка, так как в его объеме содержится всего 1,5…2,7 мас.% ультрадисперсного порошка [Крушенко Г.Г., Фильков М.Н. Модифицирование алюминиевых сплавов нанопорошками // Нанотехника, 2007. - №4. - С.58-64], и для введения в расплав требуемого его количества даже на нижнем пределе (0,05-0,08 мас.% от массы сплава) при диаметре применяемого прутка, равном 9,5 мм, требуется 20-25 кг прутка для модифицирования объема расплава, равного 1 тонне.

6) существенное отличие параметров кристаллических решеток алюминия и ультрадисперсного порошка В4С (Таблица 1), частицы которого должны служить центрами кристаллизации алюминиевой фазы, что затрудняет процесс зарождения этой фазы.

Задачей предлагаемого изобретения является разработка способа изготовления прутка, содержащего повышенное количество ультрадисперсного порошка.

Поставленная цель достигается тем, что пруток прессовали из композиции, состоящей из алюминиевого порошка и ультрадисперсного порошка нитрида титана TiN после их смешивания в планетарной мельнице.

В качестве ультрадисперсного порошка был выбран порошок нитрида титана TiN со средним размером частиц порядка 40 нанометров, полученный методом плазмохимического синтеза [Плазмохимический синтез ультрадисперсных порошков и их применение для модифицирования металлов и сплавов / В.П.Сабуров, А.Н.Черепанов, М.Ф.Жуков… Г.Г.Крушенко и др. // Новосибирск: Наука. Сибирская издательская фирма РАН, 1995. - 344 с.]), в связи с тем, что его применение в качестве модификатора в наибольшей степени позволило повысить и получить стабильные механические свойства отливок типа «обтекатель», к эксплуатационным характеристикам которых предъявляются повышенные требования [Крушенко Г.Г. Модифицирование доэвтектического алюминиево-кремниевого сплава нанопорошком нитрида титана при литье сложнонагруженных деталей транспортного средства // Технология машиностроения. - 2008. - №11. - С.5-7].

При этом следует отметить, что тип кристаллической решетки и параметры кристаллической решетки соединения В4С, используемого в [А.с. СССР №831840, С22С 1/06. Опубл. 23.05.1981], существенно отличаются от таковых для алюминия (Таблица 1), с формирования которого в виде дендритов α-твердого раствора начинается кристаллизация сплава, и для которого частицы соединения В4С являются центрами кристаллизации. Согласно известному и общепризнанному принципу ориентационного и размерного соответствия, сформулированному П.Д.Данковым (например Данков П.Д. Кристаллохимический механизм взаимодействия поверхности кристалла с чужеродными элементарными частицами // ЖФХ. - 1946. - Т.20, Вып.8. - С.853-867), кристаллическая решетка возникающей фазы ориентируется относительно исходной фазы таким образом, чтобы между расположением атомов в обеих решетках было максимальное сходство и чтобы атомы новой решетки претерпевали минимальные смещения.

При несовпадении этих параметров у компонентов, которые вводятся в качестве центров кристаллизации, и зарождаемой фазы, эффективность зарождения снижается.

Из таблицы 1 видно, что кристаллические решетки нитрида титана TiN и алюминия относятся к одному и тому же типу (кубическая гранецентрированная), тогда как кристаллическая решетка карбида бора В4С и алюминия - к разным типам (соответственно ромбоэдрическая и кубическая гранецентрированная), а параметры кристаллической решетки нитрида титана TiN (α=0,4249) и алюминия (α=4,0413) достаточно близки, что соответствует принципу ориентационного и размерного соответствия, тогда как для соединения В4С и алюминия они существенно отличаются.

Кроме того, температура плавления нитрида титана TiN (3223 К) на 500 К больше, чем температура плавления карбида бора В4С (2723 К), что обеспечивает более длительное существование частиц TiN в жидком сплаве.

С целью увеличения количества ультрадисперсного порошка в объеме прутка в качестве алюминиевого компонента использовали алюминиевый порошок с размерами частиц 0,5…0,7 мм, суммарная площадь поверхности которых в одном и том же объеме значительно превосходит таковую, если пруток прессуют при использовании гранул, размер которых составляет 1,5-3,0 мм [Крушенко Г.Г., Фильков М.Н. Модифицирование алюминиевых сплавов нанопорошками // Нанотехника, 2007. - №4. - С.58-64], что позволяет плакировать ультрадисперсным порошком значительно большую площадь поверхности.

Пример. Композицию, состоящую из алюминиевого порошка и ультрадисперсного порошка нитрида титана TiN в разном их соотношении, загружали в стакан планетарной мельницы совместно со стальными шариками диаметром 10,0 мм и приводили ее в действие на 5 минут при 400 об/мин. Обработанную композицию прессовали в прутки разного диаметра при усилии прессования 20…23 тонны. В результате были получены прутки, содержащие порядка 7,7% ультрадисперсного порошка нитрида титана TiN.

Эффективность модифицирующего воздействия проверяли с применением прутков диаметром 6,0 мм при литье алюминиево-кремниевого сплава АК12 (Al+10,0-13% Si+0,01-0,5% Мn).

После доведения температуры расплава в интервале 720-730°С проводили его рафинирование гексахлорэтаном С2Cl6, после чего в расплав вводили пруток, содержащий ультрадисперсный порошок нитрида титана TiN.

При этом было установлено, что для введения необходимого для модифицирования количества порошка (0,05-0,08 мас.% от массы сплава) требуется по массе прутка, изготовленного по заявляемому способу (содержание порошка - 7,7 мас.%), в 3,6 раза меньше по сравнению со способом изготовления прутков по А.с. СССР №831840, С22С 1/06 (содержание порошка 1,5…2,7 мас.%, в среднем - 2,1 мас.%).

Испытания показали, что механические свойства сплава, модифицированного прутком, содержащим 7,7 мас.% нитрида титана TiN, оказались выше, чем при модифицировании прутком, содержащим 1,5…2,7 мас.% порошка В4С по А.с. 831840 (Таблица 2).

Таблица 1
Характеристики кристаллической структуры карбида бора В4С, карбида титана TiN и алюминия [Нараи-Сабо И. Неорганическая кристаллохимия. - Будапешт: Изд. АН Венгрии, 1969. - 504 с.]
Характеристика Соединение
В4С TiN А1
Кристаллическая система Ромбоэдрическая кубическая гранецентрированная кубическая гранецентрированная
Параметры решетки, нм:
а 0,561 0,4249 4,0413
b - - -
с 1,212 - -
Температура плавления, К 2723 3223 933
Таблица 2
Влияние вида ультрадисперсного порошка на механические свойства сплава АК12
Вид ультрадисперсного порошка Механические свойства
Предел прочности (временное сопротивление)σв Относительное удлинение, δ, % Твердость
В4С по А.с. 831840 23,5 кгс/мм2=235 МПа 10,5 64,1 кгс/мм2=641 МПа
TiN по заявке 240-245 (ср.-242,5 МПа) 10,9-12,3 (ср.-11,6) 645-650 (ср.-647,5 МПа)
По ГОСТ1583-93 при литье в кокиль 157 МПа 2,0 500 МПа

Способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов путем смешивания порошка алюминия с размером частиц 0,5-0,7 мм и ультрадисперсного порошка нитрида титана TiN со средним размером частиц порядка 40 нм в планетарной мельнице в течение 5 мин при 400 об/мин и прессования полученной композиции в пруток.



 

Похожие патенты:
Изобретение относится к алюминиевому литейному сплаву, который может быть использован для изготовления литых деталей, подвергающихся термическим и механическим напряжениям, получаемых методами литья под давлением, фасонного литья или литья в песчаные формы.
Изобретение относится к области металлургии и может быть использовано при получении паяных конструкций из алюминия и его сплавов. .

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С: головки цилиндров, корпуса водяных насосов, впускные трубы и др.

Изобретение относится к литейному производству, а именно к модифицированию доэвтектических алюминиево-кремниевых сплавов. .

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении разнообразных изделий методами фасонного литья, в частности литья под поршневым давлением для производства отливок различного назначения, разнообразной фурнитуры, товаров народного потребления, средненагруженных узлов и агрегатов машин.

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С.
Изобретение относится к литейному производству, в частности к модифицированию алюминиево-кремниевых сплавов. .

Изобретение относится к области металлургии, в частности к составам литейных сплавов на основе алюминия, и может быть использовано в производстве поршней двигателей внутреннего сгорания.
Изобретение относится к области металлургии, в частности к составам силуминов, которые могут быть использованы в авиационной, автомобильной, приборостроительной, судостроительной и электротехнической промышленности.

Изобретение относится к сплаву системы Al-Mg-Si, способу его изготовления, а также к изготовленному из него конструктивному элементу. .

Изобретение относится к порошковой металлургии, в частности к спеченным безвольфрамовым твердым сплавам. .
Изобретение относится к порошковой металлургии, в частности к получению износостойких материалов. .
Изобретение относится к порошковой металлургии, в частности к спеченным антифрикционным материалам на основе железа. .

Изобретение относится к механической детали, содержащей вставку из композитного материала, образованного керамическими волокнами в металлической матрице, а также к способу изготовления такой механической детали и к устройству намотки, разработанному для осуществления этого способа изготовления.
Изобретение относится к порошковой металлургии, в частности к изготовлению композиционных материалов, содержащих наноразмерные частицы. .
Изобретение относится к области порошковой металлургии, в частности к спеченным твердым сплавам, и может быть использовано в различных отраслях деятельности для изготовления износостойких и ответственных деталей, подверженных интенсивному изнашиванию в процессе эксплуатации.

Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам и способам их получения. .

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением некондиционных отходов, и может быть использовано при изготовлении отливок методом литья по выплавляемым моделям.

Изобретение относится к области получения пористых структур на основе меди, пригодных для использования в энергосберегающих технологиях для изготовления тепло- и массообменных аппаратов, а также для создания композиционных материалов.

Изобретение относится к области металлургии и может быть использовано при производстве жаропрочных сталей для нужд энергетики и создания оборудования, работающего в условиях сверхкритических параметров пара.

Изобретение относится к получению термоэлектрического материала на основе халькогенидов висмута и сурьмы методом горячей экструзии. .
Наверх